

Technisches Handbuch Absolute Drehgeber WDGA mit PROFIBUS-Schnittstelle

wachendorff-automation.de

Industrie ROBUST

Impressum

Wachendorff Automation GmbH & Co. KG

Industriestrasse 7 D-65366 Geisenheim Tel: +49 (0) 67 22 / 99 65 25 E-Mail: support-wa@wachendorff.de Homepage: www.wachendorff-automation.de Amtsgericht Wiesbaden HRA 8377, USt.-ID-Nr: DE 814567094 Geschäftsführer: Robert Wachendorff

Garantieverzicht, Änderungsvorbehalt, Urheberrechtsschutz:

Die Firma Wachendorff Automation übernimmt keine Haftung oder Garantie für die Richtigkeit dieses Handbuches, sowie indirekte oder direkte Schäden, die daraus entstehen können. Im Sinne der stetigen Innovation und Zusammenarbeit mit Kunden behalten wir uns vor, technische Daten oder Inhalte jederzeit zu ändern.

Für dieses Handbuch beansprucht die Firma Wachendorff Automation Urheberrechtsschutz. Es darf ohne vorherige schriftliche Genehmigung weder abgeändert, erweitert, vervielfältigt, noch an Dritte weitergegeben werden.

Kommentare:

Sollten Sie Korrekturen, Hinweise oder Änderungswünsche haben, laden wir Sie ein, uns diese zukommen zu lassen. Senden Sie Ihre Kommentare an: support-wa@wachendorff.de

1	Eir	nleitung1		
	1.1	Zu	diesem Handbuch 1	
	1.1	1	Symbolerklärung 2) -
	1.1	2	Was Sie nicht im Handbuch finden 2)
	1.2	Pro	duktzuordnung	}
	1.3	Leis	stungsbeschreibung4	ŀ
	1.4	Lief	erumfang 4	ŀ
2	Sic	her	heitshinweise5)
	2.1	Allg	emeines5	; ;
	2.2	Bes	stimmungsgemäße Verwendung5)
	2.3	Sich	neres Arbeiten	;
	2.4	Ent	sorgung 6	;
3	Ge	räte	beschreibung7	•
	3.1	Allg	emein7	,
	3.2	WD	GA – Grundlagen	,
	3.2	1	Singleturn – ST	}
	3.2	2	Multiturn – MT (EnDra®)	}
	3.2	3	Drehrichtung	}
	3.2	4	Preset	}
	3.2	5	Skalierung	}
	3.3	Def	ault-Einstellungen 10)
	3.3	1	Allgemein 10)
	3.3	2	Drehgeber – mit Bushaube)
	3.3	3	Drehgeber – ohne Bushaube)
	3.4	LED	D-Signalisierung	
	3.5	ΒP	1 – Bushaube mit 3x PG-Verschraubung 12	,
	3.6	BP2	2 – Bushaube mit 3x M12 13	3
	3.7	DB4	4 – ohne Bushaube 2x M12, 1x M8 14	ŀ
	3.8	SD	9/SE9 – ohne Bushaube, D-Sub15)
	3.9	Dre	hgeber- und Bushauben-Etikett 16	;
	3.10	G	SD-Datei	,
4	Ins	tall	ation18	5
	4.1	Allg	emeines	}
	4.2	Me	chanische Anbindung 19)

	4.2.1		1	Vollwellendrehgeber	19
	4.2.2		2	Endhohlwellendrehgeber	19
	4.	4.3 Schir		irmung	20
	4.4		Ans	chließen des Drehgebers – mit Bushaube	21
		4.4.	1	Allgemeines	21
		4.4.	2	Einstellen der Slave-Adresse	22
		4.4.	3	Terminierung	23
		4.4.	4	Anschließen der Signal- und Versorgungsleitungen	23
	4.	5	Ans	chließen des Drehgebers – ohne Bushaube	28
		4.5.	1	Einstellen der Slave-Adresse	28
		4.5.	2	Terminierung	29
		4.5.	3	Anschließen der Signal- und Versorgungsleitungen	30
5		Pro	ojek	tierung	32
	5.	1	Allg	emeines	32
	5.	2	Inst	allieren der GSD-Datei	32
	5.	3	Eint	binden des WDGAs	34
		5.3.	1	Mitteilen der Slave-Adresse	35
		5.3.	2	E/A-Adressen einstellen	36
		5.3.	3	Parametrierung – Klasse 4	37
		5.3.	4	Diagnose-Adresse einstellen	38
	5.	4	Anle	egen der Symboltabelle	39
	5.	5	Pos	ition & Geschwindigkeit	40
	5.	6	Pres	setwert setzen – Klasse 4	42
	5.	7	Feh	lersteuerung	45
	5.	8	Aus	lesen der Diagnose	47
	5.	9	S7-	Beispielprogramm	47
6		Dre	ehg	eber – Klasse 4	48
	6.	1	Allg	emeines	48
	6.	2	Kon	figuration	48
		6.2.	1	Telegrammstrukturen	49
		6.2.2		Signalliste	50
	6.	3	Para	ametrierung	50
		6.3.	1	Code Sequence	51
		6.3.	2	Class 4 functionality	51
		6.3.	3	G1_XIST1 preset control	52

6.3.	.4	Scaling function control	52	
6.3.5		Alarm channel control		
6.3.6		Compatibility mode	52	
6.3.7		Measuring units per revolution	53	
6.3.	.8	Total measuring range	53	
6.3.	.9	Maximum Master Sign-Of-Life failures	54	
6.3.	.10	Speed measuring unit	54	
6.4	Date	enaustausch	55	
6.4.	.1	Telegrammstruktur	55	
6.4.	.2	G1_STW	55	
6.4.	.3	G1_ZSW	57	
6.4.	.4	G1_XIST1	58	
6.4.	.5	G1_XIST2	58	
6.4.	.6	G1_XIST3	60	
6.4.	.7	NIST_A & NIST_B	61	
6.4.	.8	Debug_STW & Debug_ZSW	61	
6.4.	.9	STW2_ENC & ZSW2_ENC	61	
6.5	Dia	gnose	63	
6.6	I&M	I-Funktionen	64	
6.6.	.1	I&M0	64	
6.6.	.2	I&M1	65	
6.6.	.3	I&M2	65	
6.6.	.4	I&M3	65	
6.6.	.5	I&M4	65	
6.7	Azy	klischer Parameterzugriff	66	
6.7.	.1	Grundlagen	66	
6.7.	.2	Parameter lesen	69	
6.7.	.3	Parameter schreiben	70	
6.7.	.4	Fehlerbehandlung	71	
6.7.	.5	PROFIdrive-Parameter	72	
6.7.	.6	Herstellerspezifische Parameter	75	
6.7.	.7	Drehgeberspezifische Parameter	76	
6.8	Slav	ve-Querverkehr – DxB	78	
6.9	lsoc	chroner Modus – IsoM	79	
6.9.	.1	Zustandsautomat	79	
6.9.	.2	Offline	79	

	6.9.3	3	Preparation Phase 1	80
6.9.4		4	Preparation Phase 2	80
6.9.5		5	Synchronization	80
	6.9.6	6	Operation	81
7	PRO	OFI	IBUS	82
7.	1	Allg	jemeines	82
7.2	2	Teil	nehmer	83
7.3	3	Phy	vsical Layer – Layer 1 [2]	84
	7.3.′	1	Busleitung	84
	7.3.2	2	Übertragungsgeschwindigkeit	85
	7.3.3	3	Terminierung	87
7.4	4	Dat	a Link Layer – Layer 2	88
	7.4.′	1	Allgemeines	88
	7.4.2	2	Buszugriffsverfahren	88
7.	5	Арр	blication Layer – Layer 7	89
	7.5.′	1	Kommunikationsprotokoll – DP-V0, DP-V1, DP-V2	89
7.0	6	Kor	nmunikationsbeziehungen	91
	7.6.′	1	MS0-Kommunikationsbeziehung	92
	7.6.2	2	MS1-Kommunikationsbeziehung	92
	7.6.3	3	MS2-Kommunikationsbeziehung	93
7.	7	DP-	Slave – Zustandsautomat	94
7.8	8	Par	ametrierung	97
	7.8.′	1	Allgemein	97
	7.8.2	2	Telegrammstruktur – Standardparametrierung	97
	7.8.3	3	Telegrammstruktur – DP-V1-Parameter	98
	7.8.4	4	Parameterblock für isochrone Parameter	99
7.9	9	Kor	nfiguration 1	100
7.	10	D	iagnose 1	101
	7.10	.1	Erweiterte Diagnose 1	103
	7.10	.2	Module status 1	105
	7.10	.3	Diagnosis alarm1	105
7.	11	D	atenaustausch 1	06
7.	12	8	M-Funktionen 1	07
7.	7.13 \$		lave-Querverkehr – DxB 1	111
7.	14	ls	ochroner Modus – IsoM 1	111

7.15	Арр	olikationsprofile	114
7.1	5.1	Drehgeberprofile	115
7.1	5.2	PROFIdrive	116
7.16	Del	pugsteuerwort	117
8 FA	Q		
8.1	Proje	ktierung	118
8.2	LED-	Signalisierung – Drehgeber	118
9 Te	chnis	che Beratung	
Litera	turve	rzeichnis	

Abbildungsverzeichnis

Abbildung 3.1: WDGA mit PROFIBUS-DP	7
Abbildung 3.2: WDGA58A, BP1 – 3x PG-Verschraubung	12
Abbildung 3.3: BP2 – 3x M12	13
Abbildung 3.4: DB4 – 2x M12, 1x M8	14
Abbildung 3.5: SD9/SE9 – D-Sub	15
Abbildung 3.6: Drehgeber-Etikett für BP1	16
Abbildung 3.7: Bushauben-Etikett für BP2	16
Abbildung 4.1: PROFIBUS-Bushaube	21
Abbildung 4.2: Dezimaldrehcodierschalter - Bushaube	22
Abbildung 4.3: Dip-Schalter – Bushaube	23
Abbildung 4.4: BP1-Anschlüsse – PG-Verschraubung	24
Abbildung 4.5: Längen für Abisolierung - Schematisch	24
Abbildung 4.6: Abgemantelte PROFIBUS-Standardleitung	25
Abbildung 4.7: Schirmung, Adern abisoliert	25
Abbildung 4.8: Vorkonf. PROFIBUS-Standardleitung durch PG-Verschraubung	26
Abbildung 4.9: Installationsbeispiel – PROFIBUS-Standardleitung	26
Abbildung 4.10: BP2-Anschlüsse – 3x M12	27
Abbildung 4.11: Step7 – "PROFIBUS-Adresse vergeben…" öffnen	28
Abbildung 4.12: Step7 – PROFIBUS-Adresse vergeben	. 29
Abbildung 4.13: Externe PROFIBUS-Terminierung	29
Abbildung 4.14: DB4-Anschlüsse – 2x M12, 1x M8	30
Abbildung 5.1: GSD-Datei – STEP 7	32
Abbildung 5.2: Hardware-Konfigurator – STEP 7	33
Abbildung 5.3: HW-Konfiguration – STEP 7	34
Abbildung 5.4: Adressenvergabe – "HVV-Konfig" STEP /	35
Abbildung 5.5: E/A-Adressen – STEP 7	36
Abbildung 5.7: Parametrierung – STEP 7	38
Abbildung 5.8: Diagnose-Adressen – STEP 7	38
Abbildung 5.9: Offnen der Symbolitabelle – STEP 7	39
Abbildung 5.10: Symboltabelle anlegen – STEP 7	40 44
Abbildung 5.11. Valiablehlabelle – STEP 7	41
Abbildung 5.12. Weite in ein Steuerprogramm laden – STEP 7	41
Abbildung 5.14: Variablentabelle VAT_Control – "STW2_ENC = 400	4Z
Abbildung 5.15. Variablentabelle "VAT_Control" – "newPreservatue"	43
Abbildung 5.10. Variablentabelle "VAT_Control = "G1_S1W = 1000	44
Abbildung 5.17. Variablentabelle "VAT_View" – Femercoue in G1_XIST2	40
Abbildung 5.10. Valiablehabelle "VAT_view – Ferlier in GT_AGT2 quittert	40 57
Abbildung 7.1. Modus der Fresendriktion - Relative preset mode	50
Abbildung 7.3: Zustandsdiagramm G1_XIST2-Feblersteuerung - Feblerfall	60
Abbildung 7.1: Parameter lesen - PNIT 980	60
Abbildung 7.5. Setzen des Presetwertes auf 123/5678d über D65000	70
Abbildung 7.6. Isochrone State-Machine und DP-State-Machine	70
Abbildung 8.1. Terminierung - Leitungstyn Δ	1 J 87
Abbildung 8.2: PROFIBUS-DP-Teilnehmer	01 QQ
	00

Abbildung 8.3: Leistungsstufen-PROFIBUS-DP	89
Abbildung 8.4: Kommunikationsbeziehungen	91
Abbildung 8.5: Zustandsautomat – DP-Slave	
Abbildung 8.6: Zustandsautomat – WDGA-Drehgeber	95
Abbildung 8.7: Lesen – I&M0-Daten	108
Abbildung 8.8: Schreiben - I&M1-Daten	109
Abbildung 8.9: Fehlerbehandlung	110
Abbildung 8.10: Synchronisierung – Taktschlägertelegramm	112
Abbildung 8.11: DP-Master- und DP-Zyklus	113
Abbildung 8.12: Übersicht – Encoder Profile	115
Abbildung 8.13: Kommunikationsmodell – PROFIdrive	116
Abbildung 8.14: Kommunikationsmodell - Abbildung auf PROFIBUS-DP	116

Tabellenverzeichnis

Tabelle 3.1: LED Signalisierung	11
Tabelle 3.2: Anschlussbelegung – BP1	12
Tabelle 3.3: Anschlussbelegung – BP2	13
Tabelle 3.4: Anschlussbelegung – DB4	14
Tabelle 3.5: Anschlussbelegung – SD9/SE8	15
Tabelle 3.6: Drehgeber-Etikett	16
Tabelle 3.7: Bushauben-Etikett	17
Tabelle 3.8: Übersicht – GSD-Dateien	17
Tabelle 6.1: Konfigurationsdaten	48
Tabelle 6.2: Telegrammstruktur 81-84 und 59000	49
Tabelle 6.3: Signalliste – Übersicht	50
Tabelle 6.4: Parameterblock f Tehgeberparameter – Teil 1	51
Tabelle 6.5: Parameterblock f Tehgeberparameter – Teil 2	51
Tabelle 6.6: Compatibility mode	52
Tabelle 6.7: G1_STW - Ausgangsdaten	55
Tabelle 6.8: G1_ZSW - Eingangsdaten	57
Tabelle 6.9: STW2_ENC	61
Tabelle 6.10: ZSW2_ENC	61
Tabelle 6.11: Diagnosetelegramm	63
Tabelle 6.12: I&M0	64
Tabelle 6.13: I&M1	65
Tabelle 6.14: I&M3	65
Tabelle 6.15: I&M4	65
Tabelle 6.16: Kodierung der asynchronen Parameteranforderungen	67
Tabelle 6.17: Kodierung – Format	68
Tabelle 6.18: Fehlercodes	68
Tabelle 6.19: DS_Write – Master	69
Tabelle 6.20: DS_Read – Slave	70
I abelle 6.21: DS_Write – Master	71
I abelle 6.22: DS_Read – Slave	71
Tabelle 6.23: Fehlerbehandlung – Slave	72
Tabelle 6.24: Telegrammstruktur – Teil 1	72
Tabelle 6.25: Telegrammstruktur – Teil 2	73
Tabelle 6.26: Telegrammstruktur – Teil 3	74
Tabelle 6.27: Telegrammstruktur – Tell 4	75
Tabelle 6.28: Herstellerspezifische Parameter	75
Tabelle 6.29: Drengeberspezifische Parameter – Teil 1	76
Tabelle 6.30: Drengeberspezifische Parameter – Teil 2	11
Tabelle 6.31: Drengeberspezifische Parameter – Tell 3	18
Tabelle 7.1: ISO-OSI-Modell – PROFIBUS-DP	82
	ბ კ ი_4
Tabelle 7.3: PKOFIBUS-Leitungen – Austunrungstypen	ŏ4 ог
Tabelle 7.4: Leilungsparameter – Leilungstyp A	бЭ ог
Tabelle 7.5: Mogliche Antorderungen an die Busieltung	00
Tabelle 7 p° Uperifadundsdeschwindlickelien – Leitundstvp A	ŏh.

Tabelle 7.7: SAP – MS0-Kommunikationsbeziehung (Master – SAP 0x3E)	92
Tabelle 7.8: SAP – MS1-Kommunikationsbeziehung (Master – SAP 0x33)	92
Tabelle 7.9: SAP – MS2-Kommunikationsbeziehung (Master – SAP 0x32)	93
Tabelle 7.10: Initialisierungssequenz – MS0	94
Tabelle 7.11: Zustände – state machine	
Tabelle 7.12: Telegrammstruktur – Standardparametrierung	97
Tabelle 7.13: Telegrammstruktur – DPV1-Parameter	98
Tabelle 7.14: Parameterblock für isochrone Parameter	99
Tabelle 7.15: Standarddiagnose	102
Tabelle 7.16: Identifier related diagnosis	103
Tabelle 7.17: Channel related diagnosis – Teil 1	103
Tabelle 7.18: Channel related diagnosis – Teil 2	104
Tabelle 7.19: Device related diagnosis	104
Tabelle 7.20: Module status	105
Tabelle 7.21: Diagnosis alarm	106
Tabelle 7.22: Fehlermeldungen	110
Tabelle 7.23: Applikationsprofile	114
Tabelle 7.24: Leistungsstufe und Klasseneinteilung	115
Tabelle 7.25: Debug STW	117
Tabelle 7.26: Debug ZSW	117
5-	

Abkürzungsverzeichnis

ASIC	application-specific integrated circuit
DP	Dezentrale Peripherie
DDLM	Direct Data Link Mapper
DxB	Data Exchange Broadcast
IsoM	Isochron Mode
MBP	Manchester Bus Powered
MT	Multiturn
MT-Auflösung	Multiturn-Auflösung
MUPR	Measuring units per revolution
PA	Prozess-Ausgangsdaten
PCC	PROFIBUS Competence Center
PE	Prozess-Eingangsdaten
PI	Dachverband PROFIBUS
PNO	PROFIBUS Nutzerorganisation
PROFIBUS	PROcess Field BUS
PROFINET	PROcess Field NETwork
PTL	PROFIBUS Test Labratory
RPA	Regional PROFIBUS Association
SAP	Service Access Points
SDA	Send Data with Acknowledge (nur bei FMS)
SDN	Send Data with No Acknowledge
SRD	Send and Request Data with Acknowledge
ST	Singleturn
ST-Auflösung	Singleturn-Auflösung
STW	Steuerwort
TMR	Total measuring range in measuring units
ZSW	Zustandswort

Formelzeichen

Symbol	Einheit	Beschreibung
A		PROFIBUS A-Signal
В		PROFIBUS B-Signal
GND		Ground der Spannungsversorung
GND DP		Ground – galvanisch getrennt (für Terminierung)
MT _{requested}	[Cts]	gewünschte MT-Auflösung
MUPR	[Cts]	"Measuring units per revolution" bzw. ST-Auflösung
ST _{requested}	[Cts]	gewünschte ST-Auflösung ("Measuring units per revolution")
+UB	[V]	Spannungsversorgung
TMR	[Cts]	"Total measuring range in measuring units" bzw. Gesamt-Auflösung
TMR _{max}	[Cts]	max. mögliches "Total measuring range in measuring units" bzw.
		Gesamt-Auflösung
5 V DP	[V]	+ 5 V – galvanisch getrennt (für Terminierung)

1 Einleitung

1.1 Zu diesem Handbuch

Dieses technische Handbuch beschreibt die Konfigurations- und Montagemöglichkeiten der Absolutwert-Drehgeber der Wachendorff Automation mit einer PROFIBUS-Schnittstelle. Es ist eine Ergänzung zu den anderen öffentlichen Wachendorff Automation Dokumenten, wie z. B. den Datenblättern, Montageanleitungen, Beiblätter, Katalogen und Flyern.

Lesen Sie das Handbuch vor der Inbetriebnahme. Prüfen Sie zuvor, ob die aktuellste Version des Handbuchs vorliegt.

Achten Sie beim Lesen besonders auf die Informations-, Wichtig- und Warnhinweise die mit den entsprechenden Symbolen gekennzeichnet sind (siehe 1.1.1).

Dieses Handbuch richtet sich an Personen mit technischen Kenntnissen im Umgang mit Sensoren, PROFIBUS-DP-Schnittstellen und Automatisierungselementen. Sollten Sie keine Erfahrung mit dieser Thematik haben, nehmen Sie zunächst die Hilfe von erfahrenen Personen in Anspruch.

Bewahren Sie die mit unserem Produkt gelieferten Informationen gut auf, so dass Sie sich, wenn nötig, weiter oder zu einem späteren Zeitpunkt erneut informieren können.

• Für eine optimale Nutzung des Gerätes werden alle Informationen der nachfolgenden Kapitel benötigt und sollten unbedingt gelesen werden.

1.1.1 Symbolerklärung

i	 Das INFO-Symbol steht neben einem Abschnitt, der besonders informativ oder wichtig für das weitere Verfahren mit dem Gerät ist.
	 Das WICHTIG-Symbol steht neben einer Textstelle, in der ein Verfahren zum Lösen eines bestimmten Problems beschrieben wird.
	 Das WARN-Symbol steht neben einer Textstelle, die besonders zu beachten ist, um den ordnungsgemäßen Einsatz zu gewährleisten und vor Gefahren zu schützen.

1.1.2 Was Sie nicht im Handbuch finden

- Grundlagen der Automatisierungstechnik
- Anlagenplanung
- Risiko (Verfügbarkeit, Sicherheit)
- Schirmungskonzepte
- Reflektionen
- Repeater
- Netzwerkauslegung
- Buszykluszeit
- FMA Management-Dienste
- Übertragungsdienste
- Telegrammtypen

1.2 Produktzuordnung

Dieses Handbuch ist folgenden Drehgebertypen der Firma Wachendorff Automation mit entsprechender Artikelkennzeichnung zuzuordnen:

Vollwellendrehgeber absolut:

- WDGA 58A PROFIBUS-DP (BP1, BP2) (mit Bushaube)
- WDGA 58A PROFIBUS-DP (DB4, SD9, SE9) (ohne Bushaube)
- WDGA 58B PROFIBUS-DP (BP1, BP2) (mit Bushaube)
- WDGA 58B PROFIBUS-DP (DB4, SD9, SE9) (ohne Bushaube)
- WDGA 58D PROFIBUS-DP (BP1, BP2) (mit Bushaube)
- WDGA 58D PROFIBUS-DP (DB4, SD9, SE9) (ohne Bushaube)

Endhohlwellendrehgeber absolut:

- WDGA 58E PROFIBUS-DP (BP1, BP2) (mit Bushaube)
- WDGA 58E PROFIBUS-DP (DB4, SD9, SE9) (ohne Bushaube)

 Die PROFINET-Produktpalette von Wachendorff finden Sie auf unserer Internetseite: www.wachendorff-automation.de

1.3 Leistungsbeschreibung

Ein Drehgeber ist ein Sensor zur Erfassung von Winkelpositionen (Singleturn) und Umdrehungen (Multiturn). Die Messdaten und daraus abgeleitete Größen werden vom Drehgeber aufbereitet und als elektrische Ausgangssignale für die nachfolgende Peripherie bereitgestellt.

In der WDGA-Baureihe werden die patentierten Technologien QuattroMag® für Singleturn und EnDra® für Multiturn eingesetzt. Damit ist die WDGA-Baureihe von Wachendorff besonders wartungsfrei und umweltschonend.

Die Drehgeber mit den Artikelkennzeichnungen, wie sie unter Abschnitt 1.2 beschrieben sind, kommunizieren über die PROFIBUS-DP-Schnittstelle.

1.4 Lieferumfang

Der Lieferumfang ist abhängig von der Art der Ausführung und Ihrer Bestellung. Vor der Inbetriebnahme sollten Sie den Lieferumfang auf Vollständigkeit prüfen.

In der Regel gehört zu der Produktreihe WDGA mit einer PROFIBUS-DP-Schnittstelle folgender Lieferumfang:

- WDGA mit PROFIBUS-DP (mit bzw. ohne Bushaube)
- Montageanleitung
- Steckbare Anschlussklemme bei der BP1-Variante (siehe Abschnitt 4.4.4.1)

• Die entsprechende GSD-Datei und das passende Datenblatt stehen im Internet zum Download bereit: www.wachendorff-automation.de

2 Sicherheitshinweise

2.1 Allgemeines

 Zur Inbetriebnahme des Drehgebers sind die Montage- anleitungen, das Handbuch und das Datenblatt unbedingt zu beachten.
 Eine Nichtbeachtung der Sicherheitshinweise kann zu Fehlfunktionen, Sach- und Personenschaden führen!
 Die Betriebsanleitung des Maschinenherstellers ist zu beachten.

2.2 Bestimmungsgemäße Verwendung

Drehgeber sind Komponenten zum Einbau in Maschinen. Vor der Inbetriebnahme (Betrieb in bestimmungsgemäßer Weise) muss festgestellt sein, dass die Maschine als Ganzes der EMV- und Maschinenrichtlinie entspricht.

Der Drehgeber ist ein Sensor zur Erfassung von Winkelpositionen und Umdrehungen und ist nur in diesem Sinne zu verwenden! Drehgeber der Firma Wachendorff Automation werden für den industriellen Einsatz im nicht sicherheitsrelevanten Bereich gefertigt und vertrieben.

2.3 Sicheres Arbeiten

Der Einbau und die Montage des Drehgebers darf ausschließlich durch eine Elektrofachkraft vorgenommen werden.

Zur Errichtung von elektrotechnischen Anlagen sind die nationalen und internationalen Vorschriften unbedingt zu befolgen.

Bei einer nicht fachgerechten Inbetriebnahme des Drehgebers, kann es zu Fehlfunktionen oder zum Ausfall kommen.

Vor der Inbetriebnahme sind alle elektrischen Verbindungen zu prüfen.
 Durch geeignete Sicherheitsmaßnahmen muss sicher-gestellt werden, dass bei Ausfall oder Fehlfunktion keine Personen zu Schaden kommen und es zu keiner Beschädigung der Anlage oder von Betriebseinrichtungen führt.

2.4 Entsorgung

Geräte die nicht mehr benötigt werden, oder defekt sind, müssen vom Nutzer unter Beachtung der länderspezifischen Gesetze fachgerecht entsorgt werden. Dabei ist zu berücksichtigen, dass es sich um Elektronik-Sonderabfall handelt und eine Entsorgung über den normalen Hausmüll nicht zulässig ist.

Es besteht keine Rücknahmeverpflichtung seitens des Herstellers. Bei Fragen zur ordnungsgemäßen Entsorgung wenden sie sich an einen Entsorgungs-Fachbetrieb in Ihrer Nähe.

3 Gerätebeschreibung

3.1 Allgemein

Für die WDGA-Baureihe mit PROFIBUS-DP gibt es verschiedene mechanische Varianten. Maßgeblich hierfür ist die Ausführung, mit oder ohne Bushaube, die Art der Flanschform und die Art der Welle (Voll- oder Endhohlwelle). Die Baugröße ist durch den Durchmesser am Flansch mit 58mm vorgegeben. Die Abbildung 3.1 zeigt Beispiele für die WDGA-Baureihe mit PROFIBUS-DP.

Abbildung 3.1: WDGA mit PROFIBUS-DP

Die Voll- bzw. Endhohlwelle wird mit dem sich drehenden Teil verbunden, dessen Winkelposition oder Drehzahl gemessen werden soll. Kabel- oder Steckerabgänge bilden die Schnittstelle zum Anschluss an das PROFIBUS-Netzwerk (Siehe Abschnitt 3.5, 3.6 bzw. 3.8). Die Status-LEDs im Deckel signalisieren verschiedene Zustände des Drehgebers während des Einsatzes. Sie unterstützen die Konfiguration des Drehgebers oder die Fehlersuche im Feld (siehe Abschnitt 3.4). Die Flanschbohrungen bzw. die mitgelieferten Federbleche dienen der Befestigung an der Maschine bzw. in der Anwendung.

3.2 WDGA – Grundlagen

In den folgenden Abschnitten, werden die grundlegenden Funktionen eines Absolutwert-Drehgebers beschrieben.

Im Gegensatz zu Inkremental-Drehgebern geben Absolutwert-Drehgeber Ihren Positionswert als digitale Zahl über einen Feldbus aus. Dabei wird zwischen Singleturn- und Multiturn-Drehgebern unterschieden.

Die meisten Drehgeber erlauben neben der einfachen Ausgabe des Positionswertes einen gewissen Grad an Parametrierbarkeit, wie die Auswahl der positiven Drehrichtung, das Setzen des Positionswertes auf einen Referenzwert an einer festgelegten physikalischen Position und die Skalierung des Positionswertes auf eine beliebige Auflösung und einen begrenzten Messbereich. Auf diese Weise reduziert sich der Entwicklungsaufwand im Steuerungsprogramm und die Rechenkapazität der Steuerung wird entlastet.

3.2.1 Singleturn – ST

Die Messung des Winkels von 0° bis 360° mittels einer Welle ist die Mindestfunktion eines Drehgebers. Die Sensorik basiert auf der optischen oder magnetischen Abtastung einer Maßverkörperung auf der Drehgeberwelle.

3.2.2 Multiturn – MT (EnDra®)

Ein Multiturn-Drehgeber ermöglicht die Anzahl der Umdrehungen zu erfassen. Dies wird über einen Umdrehungszähler realisiert. Damit die entsprechenden Informationen auch im spannungsfreien Zustand erhalten bleiben, wird bei den WDGA-Drehgebern die EnDra®-Technologie verwendet. Pufferbatterien und Getriebe, welche einen vergleichsweise großen Bauraum benötigen und einen entsprechenden Wartungsaufwand haben, können somit ersetzt werden.

3.2.3 Drehrichtung

Durch ein einfaches Zweierkomplement (jedes Bit invertieren und "1" addieren) des Positionswertes kann die positive Drehrichtung umgekehrt werden.

3.2.4 Preset

Bei einer bestimmten physikalischen Position, kann dem Drehgeber ein gewünschter Positionswert zugewiesen werden. Dieser muss innerhalb des Messbereichs liegen, so dass der Positionswert mit einer physikalischen Referenzposition korreliert wird. Dazu wird die Differenz des aktuellen Positionswertes mit dem gewünschten Wert berechnet. Dieser wird in einem nichtflüchtigen Speicher gesichert und auf den Positionswert als Offset aufaddiert.

3.2.5 Skalierung

Zur genauen Übereinstimmung des Positionswertes mit der physikalisch zu messenden Größe, kann eine Anpassung über die Skalierungsparameter erfolgen. Die skalierbaren Parameter sind "Measuring units per revolution (MUPR)" und "Total measuring range in measuring units (TMR)".

Der Skalierungsparameter "Measuring units per revolution (MUPR)" – Inkremente pro Umdrehung – gibt die Auflösung des Positionswertes pro Umdrehung an (auch: ST-Auflösung). Der Wert entspricht 360°. Das heißt, wird ein Wert von 3600 Cts parametriert gibt der Drehgeber die Position in 0,1° Schritten aus (s. Gleichung (2)).

$$MUPR = ST = 3600 Cts \tag{1}$$

$$Winkelschritte = \frac{Winkel \ einer \ Umdrehung}{MUPR} = \frac{360^{\circ}}{3600 \ Cts} = 0.1^{\circ}/Cts$$
(2)

Der Skalierungsparameter "Total measuring range in measuring units (TMR)" – maximaler Gesamtmessbereich des Positionswertes (Singleturn und Multiturn multipliziert) – gibt die Gesamtauflösung des Drehgebers an. Erreicht der Positionswert TMR - 1, springt dieser wieder auf 0 um und umgekehrt.

In der Regel wird der Parameter TMR so gewählt, dass er ein ganzzahliges Vielfaches der "Measuring units per revolution (MUPR)" ist (siehe Gleichung (4)), so dass der Nullpunkt immer auf der gleichen Position der Drehgeberwelle liegt.

$$TMR = 36000 Cts \tag{3}$$

$$MT = \frac{TMR}{MUPR} = \frac{36000 \ Cts}{3600 \ Cts} = 10 \tag{4}$$

In Ausnahmefällen ist es adäquat, dass TMR kein ganzzahliges Vielfaches von MUPR ist. Beispielsweise wenn in einer Anlage eine Übersetzung dafür sorgt, dass sich die gewünschte Messgröße im Verhältnis zur Drehgeberwelle um 10% schneller bewegt als die Drehgeberwelle.

Dann würde eine Einstellung von MUPR = 3960 Cts und TMR = 36000 Cts dafür sorgen, dass die schnellere aber nicht direkt messbare Welle mit einer Auflösung von 0,1° und über einen Bereich von 10 Umdrehungen gemessen werden kann. Normalerweise würde sich die Umdrehungszahl berechnen lassen, indem der Positionswert durch MUPR geteilt wird. In diesem Fall muss jedoch durch 3600 Cts geteilt werden, da das Ergebnis sonst die Umdrehungszahl der Drehgeberwelle wäre und nicht die der schnelleren Welle der Anlage.

 Es ist zu beachten, dass es zu Messfehlern kommt, wenn das Ergebnis dieser Formel eine Kommazahl ist.

3.3 Default-Einstellungen

3.3.1 Allgemein

Im Auslieferzustand ist die PROFIBUS-Adresse immer auf "126" eingestellt.

• Nach Kundenwunsch kann von Wachendorff die PROFIBUS Adresse entsprechend voreingestellt werden. Bitte wenden Sie sich an unsere technische Anwendungsberatung (siehe Abschnitt 9).

3.3.2 Drehgeber – mit Bushaube

• Standardmäßig sind die Dezimaldrehcodierschalter auf "00" eingestellt. Die Änderung der Adresse finden Sie unter Abschnitt 4.4.2.

Die Terminierung ist standardmäßig auf "ON" eingestellt. Weitere Informationen hierzu finden Sie unter dem Abschnit 4.4.3.

Die Anschlussklemme wird bei der BP1-Variante im Auslieferungszustand bei gelegt. Damit kann eine bedienerfreundliche Montage der Versorgungs- und Signalleitungen erfolgen. Unter dem Abschnitt 4.4.4.1 ist die Montage der Leitungen an die Anschlussklemme aufgeführt.

3.3.3 Drehgeber – ohne Bushaube

Die Änderung der defaultmäßigen PROFIBUS-Adresse "126" finden Sie unter Abschnitt 4.4.1.

3.4 LED-Signalisierung

Zwei Status-LEDs im Deckel signalisieren verschiedene Zustände des Drehgebers und unterstützen die Diagnose und Fehlersuche im Feld (siehe Tabelle 3.1). Die BUS-LED signalisiert den Status des Feldbusses und die DEV-LED den Status des Drehgebers.

BUS-LED bicolour	DEV-LED bicolour	Bedeutung	Ursache
0	0	kein Strom	Spannungsversorgung fehlt.
		Keine Verbindung mit einem anderen Gerät Kriterium: kein Datenaustausch	 Bus nicht angeschlossen Master nicht verfügbar/ abgeschaltet Der Drehgeber ist betriebsbereit, hat allerdings nach dem Einschalten der Versorgungsspannung noch keine Konfigurationsdaten empfangen. Mögliche Ursachen: Adresse falsch eingestellt Busleitungen falsch angeschlossen
•••*	•	Parametrierungs- oder Konfigurationsfehler. Bei funktionierender Master- Slave-Kommunikation. Kriterium: Datenaustausch korrekt Der Slave schaltet nicht in den Datenaustauschmodus um	 Slave ist falsch parametriert Slave ist falsch konfiguriert
•	•	Systemausfall	Diagnose vorhanden, Slave im Datenaustauschmodus
•	•	Normalbetrieb: Datenaustausch Slave und Betrieb ok	

Tabelle 3.1: LED Signalisierung

Erläuterung der Symbole und Sternchen:

○ LED aus ●/● LED an

*Blinkfrequenz 0,5 Hz, Mindestanzeigezeit 3 s

3.5 BP1 – Bushaube mit 3x PG-Verschraubung

Die Zeichenfolge "BP1" im Bestellschlüssel kennzeichnet einen Drehgeber mit Bushaube (siehe Abbildung 3.2). Der elektrische Anschluss erfolgt in der Bushaube über die drei PG-Verschraubungen an der Anschlussklemme. Die Anschlussbelegung der Anschlussklemme finden Sie in der Tabelle 3.2.

Abbildung 3.2: WDGA58A, BP1 – 3x PG-Verschraubung

Weitere Details sind dem zugehörigen Datenblatt zu entnehmen: <u>www.wachendorff-automation.de</u>

3.6 BP2 – Bushaube mit 3x M12

Die Zeichenfolge "BP2" im Bestellschlüssel kennzeichnet einen Drehgeber mit Bushaube (siehe Abbildung 3.3). Der elektrische Anschluss erfolgt an der Bushaube über die 2x M12-Stecker und 1x M12-Buchse. Die Anschlussbelegungen der Stecker bzw. Buchsen finden Sie in der Tabelle 3.3.

Tabelle 3.3: Anschlussbelegung – BP2

• Weitere Details sind dem zugehörigen Datenblatt zu entnehmen: <u>www.wachendorff-automation.de</u>

3.7 DB4 - ohne Bushaube 2x M12, 1x M8

Die Zeichenfolge "DB4" im Bestellschlüssel kennzeichnet einen Drehgeber ohne Bushaube (siehe Abbildung 3.4). Der elektrische Anschluss erfolgt über 2x M12 und 1x M8. Die Anschlussbelegungen der Stecker bzw. Buchsen finden Sie in der Tabelle 3.4.

Abbildung 3.4: DB4 – 2x M12, 1x M8

Tabelle 3.4: Anschlussbelegung – DB4

Weitere Details sind dem zugehörigen Datenblatt zu entnehmen: <u>www.wachendorff-automation.de</u>

3.8 SD9/SE9 – ohne Bushaube, D-Sub

Die Zeichenfolge "SD9 bzw. SE9" im Bestellschlüssel kennzeichnet einen Drehgeber ohne Bushaube mit D-Sub-Buchse. Der elektrische Anschluss erfolgt über eine 9-polige D-Sub-Buchse. Die D-Sub-Buchse ist axial (SD9) oder radial (SE9) angeordnet (siehe Abbildung 3.5). Die Anschlussbelegung der Buchse finden Sie in der Tabelle 3.5.

Abbildung 3.5: SD9/SE9 – D-Sub

Anschlussbelegung		
SE9 /	SD9	
$\bigcirc \begin{array}{c} 1 & 2 & 3 & 4 & 5 \\ \circ & \circ & \circ & \circ & \circ \\ \circ & 9 & 0 & 0 & 0 \\ g & 7 & g & 0 \\ g & 7 & g & 0 \\ \end{array} \\ \bigcirc \end{array} \\ \bigcirc $		
Buchse	D-SUB	
n.c.	1	
GND	2	
В	3	
n.c.	4	
GND DP	5	
5 V DP	6	
+UB	7	
A	8	
n.c.	9	
Schirm	Gehäuse	

Tabelle 3.5: Anschlussbelegung – SD9/SE8

3.9 Drehgeber- und Bushauben-Etikett

Die Abbildung 3.6 zeigt ein Beispiel für das Drehgeber-Etikett. In der Tabelle 3.6 finden Sie die Bedeutung und deren zugehörigen Feldposition.

Abbildung 3.6: Drehgeber-Etikett für BP1

Feldposition	Bedeutung
1. Zeile	Bestellschlüssel
1. Spalte, 1. Zeile	Singleturn- und Multiturnauflösung
1. Spalte, 2. Zeile	zulässige Spannungsversorgung
1. Spalte, 3. Zeile	Schnittstelle + Softwareversion
1. Spalte, 4. Zeile	Seriennummer des Drehgebers
2. Spalte	Anschlussbelegung der Anschlusskleme

Tabelle 3.6: Drehgeber-Etikett

Für den Fall, dass Sie einen Drehgeber mit Bushaube haben, befinden sich weitere Informationen auf dem Bushauben-Etikett (siehe Abbildung 3.7). Unter anderem finden Sie dort ebenfalls die Seriennummer des Drehgebers, den Softwarestand der Bushaube, die Anschlussbelegung und die zugänglichen Leitungsanschlüsse (siehe Tabelle 3.7). Bei der BP2-Variante ist der Anschlussbelegung der Stecker bzw. Buchsen, die Kennzeichnung des Leitungsanschlusses vorangestellt (z.B. A1: Leitungsanschluss A, Pin 1 des M12x1-Steckers).

Abbildung 3.7: Bushauben-Etikett für BP2

Feldposition	Bedeutung
2. Spalte, 2. Zeile + 3. Zeile	Anschlussbelegung (hier: BP2)
3. Spalte, 1. Zeile	LED-Bezeichnung
3. Spalte, 3. Zeile	Schnittstelle + Softwareversion
4. Zeile	Zugängliche Leitungsanschlüsse

Tabelle 3.7: Bushauben-Etikett

3.10 GSD-Datei

In der GSD-Datei sind die Eigenschaften und Funktionalitäten des Drehgebers beschrieben. Für den Anwender gibt es hierfür Projektierungstools (siehe Kapitel 5), um bedienerfreundlich die gewünschten Einstellungen an dem Drehgeber vornehmen zu können.

In der Tabelle 3.8 finden Sie eine Übersicht der verfügbaren GSD-Dateien und den dazugehörigen Klassen der WDGA-Drehgeber.

WDGA-Drehgeber Funktionalität	GSD-Datei
Klasse 4 (DP-V1/V2-Funktionen)	WDGA0DD2

Tabelle 3.8: Übersicht – GSD-Dateien

•	Die	GSD-Datei	finden	Sie	auf	unserer	Internetseite:
	www	wachendorff	-automat	tion.de	<u> </u>		

4 Installation

4.1 Allgemeines

Für die Installation des Drehgebers müssen unbedingt die Sicherheitshinweise beachtet werden (siehe Kapitel 2.3).

• Für den mechanischen und elektrischen Anschluss beachten Sie bitte unbedingt die Sicherheitshinweise (siehe Kapitel 2).

4.2 Mechanische Anbindung

4.2.1 Vollwellendrehgeber

 Drehgeber- und Antriebswelle immer über eine dafür geeignete Kupplung verbinden. Die Kupplung sorgt für den Ausgleich des Spiels beider Wellen in radialer und axialer Richtung.
Drehgeber- und Antriebswelle dürfen sich niemals berühren.
 Die maximalen Achslasten des Antriebs und des Drehgebers sind zu beachten.
 Der Drehgeber kann über die vier Bohrungen im Flansch auf der Wellenseite einfach an einer geeigneten Platte verschraubt werden.
 Eine weitere Möglichkeit der Befestigung des Drehgebers bietet der Einsatz von Spannexzentern.

• Passendes Zubehör finden Sie auf unserer Internetseite: www.wachendorff-automation.de

4.2.2 Endhohlwellendrehgeber

Drehgeber vollständig auf die Antriebswelle stecken.
 Mit den Gewindestiften in der Drehgeberwelle durch Schrauben auf der Antriebswelle arretieren.
 Der Drehgeber verfügt über ein Federblech, welches das im Flansch entstehende Drehmoment aufnimmt. Es wird mit zwei Schrauben an der Maschine befestigt. Das Federblech ist "federnd" ausgeführt, um Vibrationen und Spiel auf der Antriebswelle ausgleichen zu können und die Lager des Drehgebers dabei nicht zu überlasten.

• Passendes Zubehör finden Sie auf unserer Internetseite: <u>www.wachendorff-automation.de</u>

4.3 Schirmung

Durch geeignete Maßnahmen ist der Systemaufbau der Anlage EMV-gerecht zu installieren.

Elektromagnetische Störungen, werden im Wesentlichen durch Schaltvorgänge, Stromrichter und Leistungsschalter hervorgerufen. Des Weiteren kann es durch Überspannungen und Blitzeinschlag zur Schädigung eines Feldgerätes kommen. Dies kann zu einen Systemausfall der Anlage führen. Damit elektromagnetische Störungen abgeleitet werden, müssen die PROFIBUS-Teilnehmer, PROFIBUS-Kabelschirme und sonstige Komponenten an die Potentialausgleichsschiene angeschlossen werden. Bei PROFIBUS-DP erfolgt die Erdung über eine gemeinsame Potentialausgleichsschiene.

 Der Drehgeber und die Anschlusskabel müssen vollständig geschirmt sein.
 Die Kabelschirme sind beidseitig aufzulegen und an die Schutzerde (PE) anzuschließen.
 Das Gehäuse des Drehgebers ist ebenfalls an die Schutzerde PE) anzubinden.

Detaillierte Informationen zur Verkabelung und Schirmung finden Sie unter anderem in speziellen Unterlagen der PNO. Beispielsweise die PROFIBUS-Montagerichtlinie (Order No: 8.021); PROFIBUS-Technische Richtlinie - Aufbaurichtlinie PROFIBUS-DP/FMS Version 1.0 (September 1998) und die PROFIBUS-Planungsrichtlinie Version 1.0 (August 2009).

• Bitte informieren Sie sich gegebenenfalls in der einschlägigen Literatur über bestimmungsgemäße EMV-Maßnahmen.

4.4 Anschließen des Drehgebers – mit Bushaube

4.4.1 Allgemeines

Die Bushaube des Drehgebers (siehe Abbildung 4.1: PROFIBUS-Bushaube) wird über zwei Befestigungsschrauben mit Hilfe eines Schraubendrehers gelöst. Anschließend kann die Bushaube von dem Drehgeber axial abgezogen werden. Über die Bushaube wird die PROFIBUS-Adresse und die PROFIBUS-Terminierung entsprechend eingestellt (siehe Abschnitt 4.4.2 bzw. 4.4.3). Sind die Einstellungen vorgenommen, wird die Bushaube wieder auf den Drehgeber aufgesteckt. Dazu werden die M12-Buchsen der Bushaube und die M12-Stecker des Drehgebers zusammengefügt. Zuletzt werden die Schrauben der Bushaube wieder gleichsinnig angezogen.

Abbildung 4.1: PROFIBUS-Bushaube

• Damit die Schirmung optimal angebunden ist, muss die Bushaube rundum vollständig auf liegen und verschraubt werden.

4.4.2 Einstellen der Slave-Adresse

 Um Kollisionen auf dem Bus zu verhindern, wird empfohlen den Drehgeber zunächst an einen unabhängigen PROFIBUS- Master anzuschließen. Damit wird die Verfügbarkeit einer betriebsfähigen Anlage nicht gefährdet.
Jede PROFIBUS-Adresse darf nur einmal vergeben werden.
 Die PROFIBUS-Adresse 126 kann nur f ür Inbetriebnahme- zwecke genutzt werden (nicht f ür den Datenaustausch).
 Bei der Vergabe der PROFIBUS-Adresse zwischen 0 bis 2 ist zu beachten, dass diese häufig für PROFIBUS-Master verwendet werden.

Die Slave-Adresse wird über die zwei Dezimaldrehcodierschalter eingestellt. Der zulässige Adressbereich liegt zwischen 0 bis 99. Für eine höherwertige Adresse (100 - 126), muss die Einstellung softwaremäßig vorgenommen werden (siehe 4.5.1). Dazu müssen die Dezimaldrehcodierschalter auf x10 = 0 und x1 = 0 eingestellt sein.

Die Wertigkeit der Dezimaldrehcodierschalter funktioniert, wie im folgenden Beispiel (Abbildung 4.2) exemplarisch dargestellt. Auf der Bushauben-Platine sind über den Dezimaldrehcodierschalter die Wertigkeiten gekennzeichnet. Die x10-Kennzeichnung gibt die Zehnerstelle und die x1-Kennzeichnung gibt die Einerstelle an.

Über Drehschalter einstellbar. Bsp.: Teilnehmeradresse 24

Abbildung 4.2: Dezimaldrehcodierschalter - Bushaube

• Die Slave-Adresse wird ausschließlich zum Aufstart des Drehgebers eingelesen und übernommen.

4.4.3 Terminierung

Ist der Drehgeber der letzte PROFIBUS-Teilnehmer, dann muss die Terminierung eingeschaltet werden (siehe auch Abschnitt 7.3.3). Das Einschalten erfolgt über den Dip-Schalter in der Bushaube. Die Beschriftung der Schalterstellung befindet sich ober- bzw. unterhalb des Dip-Schalters auf der Bushauben-Platine. Ist der Drehgeber nicht der letzte PROFIBUS Teilnehmer so muss die Terminierung ausgeschaltet werden. In der Abbildung 4.2 ist der Dip-Schalter exemplarisch dargestellt.

Abbildung 4.3: Dip-Schalter – Bushaube

Ist die Terminierung eingeschaltet, dann ist der PROFIBUS-DP abgeschlossen, d.h. weitere PROFIBUS-Teilnehmer die sich dahinter befinden sind dann abgekoppelt.

4.4.4 Anschließen der Signal- und Versorgungsleitungen

4.4.4.1 BP1 – 3x PG-Verschraubung

Die Anschlussbelegung der Anschlussklemme ist der Tabelle
 3.2 zu entnehmen.

Die Versorgungsleitung muss einmal in der Anschlussklemme angeschlossen werden. Die Versorgung "+" (auch: +UB) und "-" (auch: GND) im "IN"- und "OUT"gekennzeichneten Bereich der Anschlussklemme sind intern durchgeschleift. Auf den Anschluss mit dem "+"-gekennzeichneten Bereich der Anschlussklemme wird die positive Spannung +UB (siehe Drehgeber-Etikett) aufgelegt. Auf den Anschluss mit dem "-"-gekennzeichneten Bereich der Anschlussklemme wird GND angeschlossen.

© Wachendorff Automation GmbH & Co. KG
Die hineinreichende PROFIBUS-Leitungen A (grün) und B (rot) werden an die Anschlussklemme in dem "IN"-gekennzeichnet Bereich angeschlossen. Die weiterführende PROFIBUS-Leitungen (A und B), sofern welche benötigt werden, werden an die Anschlussklemme mit dem "OUT"-gekennzeichneten Bereich angeschlossen. A-"IN" und A-"OUT" bzw. B-"IN" und B-"OUT" sind intern durchgeschleift, wenn die Terminierung ausgeschaltet ist.

Abbildung 4.4: BP1-Anschlüsse – PG-Verschraubung

 Verhindern Sie, dass die Versorgungsspannung mit den Datenleitungen A und B in Kontakt kommen. Hierdurch kann die Elektronik beschädigt werden. 					
Überkreuzung der PROFIBUS-Leitung und de Versorgungsleitung ist zu vermeiden.					
 Nicht verwendete PG-Anschlüsse mit Verschlusskappen schließen. 					

Im Folgenden wird ein Installationsbeispiel gezeigt:

Die Abbildung 4.5 zeigt die Empfehlung für die Längen der Abisolierung der Leitungen zum Anschluss an die Anschlussklemme.

Abbildung 4.5: Längen für Abisolierung - Schematisch

Die Abbildung 4.6 zeigt eine abgemantelte PROFIBUS-Standardleitung mit der Kontakthülse für das Schirmgeflecht. Die Adern sind entsprechend der Abbildung 4.5 abisoliert.

Abbildung 4.6: Abgemantelte PROFIBUS-Standardleitung

Das gekürzte Schirmgeflecht (Länge siehe Abbildung 4.5) wird über die Kontakthülse gestülpt (siehe Abbildung 4.7).

Abbildung 4.7: Schirmung, Adern abisoliert

Die Vorkonfektionierte PROFIBUS-Standardleitung wird durch die PG-Verschraubung gesteckt (siehe Abbildung 4.8).

Abbildung 4.8: Vorkonf. PROFIBUS-Standardleitung durch PG-Verschraubung

Die Adern werden an der Anschlussklemme entsprechend angeklemmt. Die Anschlussklemme wird in der Bushaube aufgesteckt. Die PROFIBUS-Standardleitungen werden mit der Hutmutter verschraubt (siehe Abbildung 4.9).

Das Anschließen der Versorgungsleitung erfolgt nach ähnlichem Prinzip.

Abbildung 4.9: Installationsbeispiel – PROFIBUS-Standardleitung

4.4.4.2 BP2 – 3x M12

• Die Anschlussbelegung für die BP2-Variante ist der Tabelle 3.3 zu entnehmen.

Für die Versorgungsleitung wird eine 4-polige M12-Buchse mit A-Codierung benötigt. Auf Pin 1 liegt +UB (siehe Drehgeber-Etikett) und auf Pin 3 liegt GND. Der Schirm sollte auf der Überwurfmutter aufliegen.

Die PROFIBUS-Leitung für den hineinführenden Bus benötigt eine 5-polige M12-Buchse mit B-Codierung. Auf dem Pin 2 ist das A- und auf dem Pin 4 das B-Signal. Die anderen Pins sind nicht belegt.

Für die weiterführende PROFIBUS-Leitung wird ein 5-poliger M12-Stecker mit B-Codierung benötigt. Das A-Signal liegt auf Pin 2 und das B-Signal auf Pin 4. Alle weiteren Pins sind nicht belegt.

Abbildung 4.10: BP2-Anschlüsse – 3x M12

- Ist die Terminierung auf "ON", ist der weiterführende PROFIBUS abgekoppelt.
- Der Schirm sollte sowohl f
 ür die Versorgungs- und PROFIBUS-Leitungen auf der
 Überwurfmutter der Stecker bzw. Buchsen aufliegen

4.5 Anschließen des Drehgebers – ohne Bushaube

4.5.1 Einstellen der Slave-Adresse

	 Um Kollisionen auf dem Bus zu verhindern, wird empfohlen den Drehgeber zunächst an einen unabhängigen PROFIBUS- Master anzuschließen. Damit wird die Verfügbarkeit einer betriebsfähigen Anlage nicht gefährdet.
	 Jede PROFIBUS-Adresse darf nur einmal vergeben werden. Die PROFIBUS-Adresse 126 kann nur für Inbetriebnahmezwecke genutzt werden (nicht für den Datenaustausch).
	 Bei der Vergabe der PROFIBUS-Adresse zwischen 0 bis 2 ist zu beachten, dass diese häufig für PROFIBUS-Master verwendet werden.

Das Einstellen der Slave-Adresse erfolgt ausschließlich über den PROFIBUS-Master.

Wie Sie die Slave-Adresse via einem PROFIBUS-Master einstellen können, sehen Sie in dem Beispiel der Abbildung 4.11 (Software: Simatic Manager – Step7).

Abbildung 4.11: Step7 – "PROFIBUS-Adresse vergeben..." öffnen

Die hier eingestellte PROFIBUS-Adresse wird im Hardwarekonfigurator (siehe Abschnitt 5.3.1) zugeordnet.
 Ist der PROFIBUS beidseitig Terminiert, kann die Vergabe der PROFIBUS-Adresse über einen Programmieradapter (USB auf PROFIBUS) erfolgen. Hierzu wird dann keine Steuerung benötigt.

Abbildung 4.12: Step7 – PROFIBUS-Adresse vergeben

4.5.2 Terminierung

Der Drehgeber stellt keine intern einstellbare Terminierung zur Verfügung. Ist der Drehgeber der letzte PROFIBUS-Teilnehmer, so müssen Sie eine externe Terminierung vornehmen. Die beispielhafte externe Terminierung (siehe Abbildung 4.13) erfolgt, in dem Sie diese Terminierung mit dem weiterführenden PROFIBUS – Bus "OUT" (Leitungsanschluss B) – verbinden (siehe Abschnitt 4.5.3.1).

Abbildung 4.13: Externe PROFIBUS-Terminierung

• Passendes Zubehör finden Sie auf unserer Internetseite: <u>www.wachendorff-automation.de</u>

4.5.3 Anschließen der Signal- und Versorgungsleitungen

4.5.3.1 DB4 – 2x M12, 1x M8

Für die Versorgungsleitung wird eine 4-polige M8x1-Buchse mit A-Codierung benötigt. Auf Pin 1 liegt +UB (sieh Drehgeber-Etikett) und auf Pin 3 und 4 liegt GND. Der Schirm sollte auf der Überwurfmutter aufliegen.

Für den hineinreichenden PROFIBUS wird eine PROFIBUS-Leitung mit einer 4-poligen M12-Buchse mit B-Codierung angeschlossen. Dabei liegt das A-Signal auf Pin 2 und das B-Signal auf Pin 4. Pin 1 und 2 sind nicht belegt.

Der weiterführende PROFIBUS wird mit einer PROFIBUS-Leitung mit einem 5-poligen M12-Stecker mit B-Codierung angeschlossen. Auf Pin 2 liegt das A-Signal und auf Pin 4 das B-Signal.

Wird der Drehgeber als letzter PROFIBUS-Teilnehmer angeschlossen kann an diesen Anschluss (BUS-OUT), eine M12-PROFIBUS-Terminierung angeschlossen werden (siehe Abbildung 4.13). Dafür liegt auf Pin 1 die benötigten galvanisch getrennte 5V-Spannung (Signalbezeichnung: 5 V DP) an. Das dazugehörige Masse GND DP liegt auf Pin 3.

Abbildung 4.14: DB4-Anschlüsse – 2x M12, 1x M8

4.5.3.2 SD9/SE9 - D-Sub

• Die Anschlussbelegung für die SD9/SE9-Variante ist der Tabelle 3.5 zu entnehmen.

Schließen Sie einen 9-poligen PROFIBUS D-Sub-Stecker an die D-Sub-Buchse an. Diese sind in verschiedenen Varianten auf dem Markt erhältlich (z.B. als Diagnosestecker, mit oder ohne Busabschluss usw.).

5 Projektierung

5.1 Allgemeines

Die folgenden Beispiele basieren auf dem Programm "STEP 7" (Version 5.5). Falls nicht schon vorhanden, benötigen Sie die entsprechende Hardware, einen DPM1-Master, DPM2-Master, DP-Slave (WDGA-Drehgeber mit PROFIBUS) und die entsprechende GSD-Datei (siehe Abschnitt 3.10).

5.2 Installieren der GSD-Datei

Das Installieren der GSD-Datei des WDGA-Drehgebers mit PROFIBUS erfolgt im Hardware-Konfigurator "HW Konfig" (siehe Abbildung 5.1). Weitere Informationen zur GSD-Datei siehe unter Abschnitt 3.10.

Die GSD-Datei für Klasse 4 finden Sie auf unserer Internetseite: Download – GSD-Datei • Schließen Sie die geöffneten Hardware-Projekte.

Unter "Extras" -> "GSD-Dateien installieren..." Ihren entsprechenden Speicher-Ort auswählen.

GSD-Datei "Installieren".

投 HW Konfig: Hardware konfigurieren	
Station Zielsystem Ansicht Extras Hilfe	
🗅 🚅 함 🖲 🖓 👘 🖻 👘 🏦 🔝 🖼 😭	
GSD-Dateien installieren	— X
GSD-Dateien installeren: aus dem Verzeichnis 💌	
C\PROGRAM FILES\SIEMENS\STEPP\S7TMP	Dutchsuchen
Datei Ausgebestand Version Sprachen	
WD 6400D2.gsd Default	
Workeen and the second second	
WDGA0E87.GSD) für
Klasse 2 wähl	en 🔪 📗
WDGA Profibus Class2. Ident 0587: Encoder profile 1.1 Class2 (DPV0 only)	
Installeren Protokollanzeigen Alle avswählen Alle abwählen	
Schließen	Hife

Abbildung 5.1: GSD-Datei – STEP 7

Anschließend den "Hardware-Katalog" aktualisieren.

 Im "Hardware-Katalog" erscheint unter "PROFIBUS-DP", "Weitere Feldgeräte", "Encoder", "Wachendorff Automation", "WDGA PROFIBUS Class4", der WDGA-Drehgeber (siehe Abbildung 5.2).
 Hier erscheinen die "WDGA PROFIBUS Class4"-Module .
 Die Auswählbaren Module entsprechend den Konfigurationsdaten der Klasse 4 (siehe Tabelle 6.1).

Image: Standard Endigen Zelegaten Anskie Ender Hife Image: Ima	strem [///////////////////////////////////
	peters / / / / / / / / / / / / / / / / / /
oranous-relister	a a a b c c c c c c c c c c
	B C SINDERNE B C SINDERG
r n >	Compared Provided Compared C

Abbildung 5.2: Hardware-Konfigurator – STEP 7

5.3 Einbinden des WDGAs

Falls nicht schon vorhanden, konfigurieren Sie einen DPM1-Master im Hardwarekonfigurator.

In der Abbildung 5.3 sind die verschiedenen Bereiche des "HW-Konfigurators" gekennzeichnet.

Klicken Sie im "Hardware-Katalog" auf die Baugruppe "WDGA PROFIBUS Class4" und ziehen Sie diese in das "Stations-Fenster" an den Feldbus (hier: "PROFIBUS(1): DP-Mastersystem(1)").

Anschließend klicken Sie einmal auf das "WDGA-Icon". Die Baugruppe wird im "Stationseigenschaften-Fenster" angezeigt.

Ziehen Sie aus dem "Hardware-Katalog" Ihr gewünschtes "WDGA PROFIBUS Class4"-Modul in das "Stationseigenschaften-Fenster" auf den "Steckplatz 1".

約 HW Keefa - ISMATC 300-Station (Keefaustion) Clau2]	
🙀 Station Bearbeiten Einfligen Ziellsystem Ansicht Eitras Ferster Hilfe	. # X
Reg Middle Bodde Middle Dariel Bible Bodde Bodde Middle Dariel Bible Bodde Bodde Middle Dariel Bible Middle Dariel	Speter Speter Speter Speter State State Speter State State <
Erfogen mojich	I till printer, or gener Tal printer, or gener Tal printer, or gener Tal printer, or gener Tal printer, percent Tal pe

Abbildung 5.3: HW-Konfiguration – STEP 7

5.3.1 Mitteilen der Slave-Adresse

Die im WDGA zuvor eingestellte Slave-Adresse (Mit Bushaube: siehe Abschnitt 4.4.2; Ohne Bushaube: siehe Abschnitt 4.5.1) muss in der Hardwarekonfiguration mitgeteilt werden (siehe Abbildung 5.4).

Doppelklick auf das "WDGA-Icon".

Unter "Allgemein", "PROFIBUS. . . ", "Parameter" die entsprechende Slave-Adresse eingeben.

Wählen Sie im "Subnetz" Ihren projektierten PROFIBUS aus und bestätigen Sie mit "OK".

🙀 HW Konfig - (SIMATIC 300(1) (Konfiguration) DPV0 Test)				- # X
🙀 Station Bearbeiten Einfügen Zielsystem Ansicht Extras	Fenster Hilfe			_ 8 ×
D 😂 🗣 🎕 😹 I 🗞 🖄 🕍 🛅 🖽 😵 😥				
Z JU) UH	PROFIBUS(1): DP-Masternation (1)	*		: <u>a</u> x
2 ISI CPU 313C-2 DP		Sychem		nt ni
X2 DP	Doppelkli	ck auf = Proli: Standard		*
22 D/16/D076	WDGA-lee		0P	
3		🗎 🗍 🕮 bereito p	rojektierte Stalionen	
4 PIECO* 343-1	-	R-Obje	50. Jacor	
6		DP/AS-i		
7 8		EH-III DP/FX-L	Link FR	
9 -		🕀 🧰 ET 2008	3	
	Eigenschaften - DP-Sleve	_ <u>_</u>	7	
	Alcenein Decentions			
	Bernere		1	
	Bestelrummer:	GSD-Datel (Typdatel: WDGA0E87.GSD		
	Famile: Encoder			
	DP-Slave-Typ: WDGA Profibua: DPV0			
	Bezeichnung: WDGA Prolibus DPV0	(Klick auf "PROFIBUS")		
	Adressen	Tojnehmer, Masternation	uguppen	
<	Disgrassedresse: 1022	PROFIBUS 8		
		DP. Masternaters (1)	actes	
(0) WOGA Holdus UPVU				
Steckplatz DP-Kennung Bestelnummer / Beze	SYNC/FREEZE-Fähigkeiten			
	🖉 SYNCriikig 🖉 FREEZE-Liikig	R Ansprechüberwechung		
	Kommentar:	Eigenschaften - PROFIBUS Schnittstelle W	DSA Profibus DPV0	- X-
		Vergal	be der	
		Algemein Parameter PROFIL	BUS-Adresse	
		Advesse: 🛛 💌		
		_		
		Obertregungsgeschwindigkeit: 19.2 kbit/s		
		Subretz:		
		- nicht vemetzt	Neu.	
		PROFIBUISITI	19/2 Kot/a	Dep 1
			- Cigoritoria	
			Lorone	51
				Ť.
1		OK	Abbrechen	Hfe
Drücken Sie F1, um Hilfe zu erhalten.				And

Abbildung 5.4: Adressenvergabe – "HW-Konfig" STEP 7

5.3.2 E/A-Adressen einstellen

Die E/A-Adressen sind die S7-Adressen, unter denen der Drehgeber in der Steuerung angesprochen wird. Über diese greift die Steuerung auf die Ein- und Ausgangsdaten des Drehgebers zu. Die Zuweisung der E/A-Adressen erfolgt über das "Eigenschaften-DP-Slave"-Fenster (siehe Abbildung 5.5).

Doppelklick auf die Zeile des angefügten "WDGA-Moduls" im "Stationseigenschaften-Fenster".

Im "Eigenschaften - DP-Slave"-Fenster die gewünschte E/A-Adresse eingeben und mit "OK" bestätigen.

HW Konfig - [SIMATIC 300(1) (Konfiguration) DPV0 Text]		F
D ch - R R R A D C C	renszer Hure	- 10' X
Station Bearbeiten Einflugen Zelsystem Ansicht Extrast Image: Station Station Station Image: Station Image	Fender File PROFEUS(1) DP Matarestan (1) Surface Dolt Stations-Fenster Stations-Fenster File Stations-Fenster File Egenochaften - DP-Slave Stations-Fenster	
T Depekkisk Steckplatz DP-Karnung DP-Karnung	EAA Type Advosse Advosse Friender Friender Friender Advosse Friender Friender Advosse Friender Friender Advosse Friender Friender Friender Friender Friender Friender Friender Friender Friender Friender Friender Friender Friender Friender Friender Friender Friender Friender Friender Friede	Е
	Stationseigenschaften-Fenster	÷ žē <u>v</u>

Für die E/A-Adressen sind identische Adressen zulässig.

Abbildung 5.5: E/A-Adressen – STEP 7

Je nach Steuerungstyp kann es für den zulässigen Wertebereich der E/A-Adressen Einschränkungen geben, die nicht direkt zu Fehlermeldungen führen. Wenn der Zugriff auf die Daten nicht über die Adressen Exxx oder Axxx, sondern nur über PExxx und PAxxx möglich ist, wurden hier möglicherweise zu hohe Werte eingetragen. Überschneidungen mit anderen Slaves vermeiden!

5.3.3 Parametrierung – Klasse 4

Über das "Eigenschaften - DP-Slave"-Fenster kann die Parametrierung vorgenommen werden (siehe Abbildung 5.6).

Klicken Sie auf die Parameter um Ihre Parametrierung vorzunehmen:

- "code sequence" Änderung der Drehrichtung (siehe Abschnitt 6.3.1).
- "class 4 functionality" Aktivierung der Klasse-4-Funktionalitäten (siehe Abschnitt 6.3.2).
- "G1_XIST1 preset control" Auswirkung des Presets auf den Positionswert in G1_XIST1 (siehe Abschnitt 6.3.3).
- "scaling function control" Aktivierung der Skalierung (siehe Abschnitt 6.3.4).
- "Alarm channel control" Bei deaktiviertem "Alarm channel control" wird über die Diagnose nur die 6 byte lange Standarddiagnose ausgegeben (hat nur im Kompatibilitätsmodus eine Auswirkung, siehe Abschnitt 6.3.5).
- "Compatibility mode" Kompatibilität zur älteren Drehgeberprofilversion 3.1 (siehe Abschnitt 6.3.6).
- "measuring units per revolution" ST-Auflösung eingeben (siehe Abschnitt 6.3.7).
- "total measuring range" Gesamtauflösung eingeben (siehe Abschnitt 6.3.8).
- "Maximum master sign-Of-life failures" Der Parameter legt die Obergrenze des Fehlerzählers des isochronen Modus auf das 10-fache des Werts fest (hat nur im Kompatibilitätsmodus eine Auswirkung, siehe Abschnitt 6.3.9).
- "Speed measuring unit" Einheit des Geschwindigkeitswertes festlegen (siehe Abschnitt 6.3.10).
- "64Bit-MUPR (lower half)" 0-31 Bit-Teil der ST-Auflösung; Immer gleich MUPR (siehe Abschnitt 6.3.7).
- "64Bit-MUPR (upper half)" 32-64 Bit-Teil der STAuflösung; Immer 0 (siehe Abschnitt 6.3.7).
- "64Bit-TMR (lower half)" 0-31 Bit-Teil der Gesamtauflösung (siehe Abschnitt 6.3.8).
- "64Bit-TMR (upper half)" 32-64 Bit-Teil der Gesamtauflösung (siehe Abschnitt 6.3.8).

💏 HW Kerfig - (SIMATIC 300-Skriter) (Kerfiguration)	o 2 8
😰 Stationa Beauteites Eintlages Zebystem Anskilt Estaas Fernter Hilfe	- <i>H</i> ×
aut WDGA-Lcon	k la
	Sychen At Au
2 0000000000000000000000000000000000000	Dolk Standard
22 075(02)5 PFDCFU.5(). 50 Martenysten ()	8 1 ET 2008
2 digenciation - DP-Saw Parametrierung	E 200.
4 Class 4	19 - ET 2006 19 - ET 2006P
E Provide Ver	0 G FT 200L
B Allgarrate OF Assentation	ET 200pro
3	⊕ === ET 200R m === ET 2005
17 Cooking and maked	0 0 FT 2001
- G (1, GT) proct control enabled	, D Traitionbargapper
r ended dared control ended , , , , , , , , , , , , , , , , , ,	E IDENT B IDENT
Computing mose Computing Computing	m 🔤 KC
Hardelar D. Difference Development / Englishment / A Knowned Honorada game of firefulness Honorada game of firefulness	B B Refer
1 15 listen 34 256.256	i Schwitzeride
Sight magn (open half) 0	E SIMAD'IN
-2 G4 tet tro (Jowe Half) -10 G40 tro (Jowe Half) -20 G40 tro (Jowe Half)	0 2 SNOTAVE
+ He-Permetriang +	III III SIMOREG
CM Albrecher Hille	Weitere PELDGERATE
	a Schalagenite an an VD
	Ball Encoder WDGA Module
	B Wechendorff Automation Class4
	WDG4 Profiber Gam2 H
	- Urivensinodul
	Telegram 82
	Telegram E3
	Telegram \$9001 (81 with debug)
	E Corpatible PPDRRUS OP-Stress
	PROFIBUS-PA
	E SMATE 300
	8 T SMATIC PCB and Cantol 300/400
	B- SMATE PEStation
	Input data containo 64bit position value, error code and 32bit speed $\mathbf{T}_{\mathbf{g}}$

Abbildung 5.6: Parametrierung – STEP 7

 Ist die Hardwarekonfiguration abgeschlossen, kann diese übersetzt und in das Zielsystem (DPM1) geladen werden.
 Achten Sie darauf, dass Sie auch übersetzt und nicht nur gespeichert haben.

5.3.4 Diagnose-Adresse einstellen

Zur Auswertung von Diagnose-Nachrichten des Drehgebers ist die Zuweisung einer Diagnose-Adresse erforderlich (siehe Abbildung 5.7).

Geben Sie die Diagnoseadresse im "Eigenschaften – DP-Slave"-Fenster ein.

E	igenschaften - DP-Sla	ve	(••••••••••••••••••••••••••••••••••••	
a / Bezeichnu	Algemen Parametria Baugruppe Bestellnummer: Famile: DP-Slave-Typ: Bezeichnung:	Encoder WDGA Profibus DPVD	GSD-Datei (Typdate): WDGA0E87.GSD	ugruppen enken
with precet	Adressen Diagnoseadresse:	Diagnoseadresse eingeben 1022	Tekner/Mestersystem PROFIBUS 8 DP-Mestersystem (1)	
	SYNC/FREEZE-Fai	igkelen 🕅 FFEEZE <i>fähig</i>	✓ Anspischüberwachung	DGERÄTE räle
	Kommentar:		A 	iute otary
	ок		Abbrechen Hilfe	₽-taŭ WD

Abbildung 5.7: Diagnose-Adressen – STEP 7

	 Die Diagnose-Adresse kann im gesamten Peripheriebereich der Steuerung liegen.
i	• Durch die Diagnose-Adresse wird keine E/A-Adresse belegt.
	 Die Zuweisung der Diagnose-Adresse ist nur erforderlich, wenn die Diagnosefunktionen genutzt werden.
	Auslesen der Diagnose siehe Abschnitt 5.8.

5.4 Anlegen der Symboltabelle

Legen Sie Ihre Symboltabelle an, oder ergänzen Sie gegebenenfalls Ihre bestehende. Öffnen Sie die Symboltabelle gemäß der Abbildung 5.8.

📕 SIMATIC Manager - [01_Klasse:	2 C:\Program	n Files\SIEMENS\Step7\S7Proj\01_Klas	15]		
👌 Datei Bearbeiten Einfügen	Zielsystem	Ansicht Extras Fenster Hilfe			
D 🛎 🎛 🛲 X 🖻 🛍	💼 😨 💁	🕒 🗈 🔛 🏢 💽 🕹 Kein Filte	er>	2 🏹 💥 🏽 🖌 🖻 [□ №?
E-🎡 In <support-projekte></support-projekte>	Objektname	Symbolischer Name	Тур	Größe Autor	Änderungsdatum
	🖻 Quelen		Quellordner		24.01.2013 13:57:47
回·1 5IMATIC 300(1) 白。 潮 CPU 3130-2 DP	🔁 Bausteine		Bausteinordner off	fline	18.02.2014 11:08:36
E S7 Programm	🔄 Symbole		Symboltabelle	8363	18.02.2014 11:05:52
🖽 📲 CP 343-1					
		Ausschneiden	Ctrl+X	1	
		Kopieren	Ctrl+C		
		Einfügen	Ctrl+V		
		Löschen	Del		
		Neues Objekt einfügen	•	Quellordner	
		Zielsystem	•	Bausteinordner offline	
		Ablaufeigenschaften		AWL-Quelle	
		Objekteigenschaften	Alt+Return	Organisationsbaustein	
		Spezielle Objekteigenschaften	+	Funktionsbaustein	
	-			Funktion	
				Datenbaustein	
				Datentyp	
				Variablentabelle	
				Textbibliotheksordner	
				Anwender-Textbiblioth	iek
				Symboltabelle	
				Externe Quelle	

Abbildung 5.8: Öffnen der Symboltabelle – STEP 7

Geben Sie unter "Symbol" Ihren eigenen Symbolnamen ein.

Unter "Adresse" geben Sie Ihren festgelegten E/A Adressbereich ein. Achten Sie dabei darauf, dass Sie die Wort-Größen entsprechend der Größen der anzusprechenden Worte (z.B. 32-bit-Positionswert siehe PROFIBUS-Handbuch bzw. **Fehler! Verweisquelle konnte nicht gefunden werden.**) wählen. Siehe Beispiel in der Abbildung 5.9.

© Wachendorff Automation GmbH & Co. KG

- 🛃 SIMATIC Ma	SIMATIC Manager - [01_Klasse 2 CAProgram Files/SIEMENS/Step7/S7Proj/01_Klass]										
🎒 Datei Bea	rbeiten	Einfüger	n Zielsystem Ansic	ht Extras I	Fenster Hilf	e	_ 8 ×				
🗋 🗅 😂 🔡 🖗	3 X	ħ 🖻	📥 🛛 🔩 × 2	5-18 🗰	C Kei	n Filer> 🔄 🏹 🞇 🕮 🖷 🖽 🙀					
- 👸 In < Support-J	Projektes		0 hiekmame	Sumbolian	her Name	Tun Britike Autor Andexuncertatum Kommentar					
😑 - 🧾 01_KJas	Sym	ibol Editi	or - (S7-Programm(2) (Symbole) (1 Klasse 2\Sl	MATIC 300(1)) CPU 313C-2 DP)					
	AT To	belle B	learbeiten Einfügen	Ansicht Ex	dras Fenste						
			V Bo e Loo			- Va N9					
	Kommentar 22 Bit Devices										
⊡- #	B III Poston_value ED 0 Divolu 32-08-Poston										
	3		Speed_Value	ED 4	DWORD	32-Bit-Speed					
	4		Set_Preset	A 0.7	BOOL	Set-Preset-Bit (activate/Preset-Mode)					
	5										
	Depaker	- CL - CL -									
	Drucker	ale ri, i	urn mire zu ernalten.								
	111	+									
Drücken Sie F1, u	m Hilfe z	u erhalte	en.			TCP/IP -> ASDX AX88772B USB2.0 t					

Abbildung 5.9: Symboltabelle anlegen – STEP 7

5.5 Position & Geschwindigkeit

Position und Geschwindigkeit beobachten:

Öffnen Sie die Variablentabelle (Analog zur Abbildung 5.8).

Geben Sie unter "Symbol" Ihre angelegten Symbolnamen ein.

Wählen Sie Ihr gewünschtes "Anzeigeformat".

Unter "Statuswert" erscheinen die aktuellen Werte (z.B. Position und Geschwindigkeit), welche Sie mit dem "Brillen-Icon" beobachten können.

R w	
	Automation GmbH & Co. KG

Ľ	12 .v	ar - [VAT1	@01_Klasse 2\SIM	MATIC 300(1)\CF	PU 313C-2 DP\S7-Programm(2) ONLINE]					
	👪 Tabelle Bearbeiten Einfügen Zielsystem Variable Ansicht Extras Fenster Hilfe 🛛 🖃 🗙									
	-124	DB	- 5 5 6		× 🗣 🛯 🕺 🗐 🚳 🔤 🚳 🕼					
	1	Operand	Symbol	Anzeigeformat	Statuswert	Steuerwert				
	1	ED 0	"Position_Value"	BIN	2#0000_0000_0000_0011_1111_0111_0110_1111					
	2	ED 4	"Speed_Value"	BIN	2#0000_0000_0000_0000_0000_0000_0000					
	3									
	•					F				
0	1_Kla	sse 2\SIM	ATIC 300(1)\\S7-P	rogramm(2)	Abs Abs	< 5.2				

Abbildung 5.10: Variablentabelle – STEP 7

Position und Geschwindigkeit in ein Steuerprogramm laden:

Öffnen Sie Ihr Steuerungsprogramm ("KOP/AWL/FUP"-Fenster).

Laden Sie mit "L" die Position/Geschwindigkeit mit dem von Ihnen vergebenen Symbolnamen und transferieren Sie diese mit "T" in einen von Ihnen gewählten Merker.

Siehe Beispiel der Abbildung 5.11.

Abbildung 5.11: Werte in ein Steuerprogramm laden – STEP 7

5.6 Presetwert setzen – Klasse 4

Zum Preset setzen benötigen Sie zunächst das S7-Beispiel. Die Preset-Routine wird innerhalb des FC2 durchgeführt. Zum Presetwert setzen werden mehrere Schritte benötigt:

Schritt 1:

Öffnen Sie die Variablentabelle "VAT_Control" (siehe Abbildung 5.12).

Setzen Sie den Steuerwert von "STW2_ENC" auf den Hex-Wert 0400 ("STW2_ENC" – Bit 10). Damit ist der Drehgeber im "Control by PLC"-Modus (siehe Tabelle 6.9 bzw. Abschnitt 6.4.9.1).

Steuern Sie den Wert mit dem "Variable Steuern"-Button.

- Gültiger Wertebereich für den Preset: TMR-1.
- Der Wert von G1_XIST1 und G1_XIST2 muss identisch sein, ansonsten liegt ein Fehler vor (siehe Abschnitt 5.7).

Kalendari († 1997) Tabe	Var - VAT_control Tabelle Bearbeiten Einfügen Zielsystem Variable Ansicht Extras Fenster Hilfe											
-121												
VAT_control Quick 4\SIMATIC 300(1)\CPU 313C-2 DP\Parameter demo ON												
	1	Opera	and	Symbol	Anzeigeformat	Statuswert	Steuerwert					
1		NW	36	"G1_STW"	HEX	W#16#0000	W#16#0000					
2		MW	34	"STW2_ENC"	HEX	W#16#0400	W#16#0400					
3		MD	8	"newPresetValue"	HEX	DW#16#0000000	DW#16#0000000					
4												
-												
<u></u>	VA	L_viev	v I	@Quick 4\SIMATIC 30	0(1)\CPU 313C-	2 DP\Parameter demo						
	1	Oper	and	Symbol	Anzeigeform	at Statuswert	Steuerwert					
1		MW	32	"G1_ZSW"	HEX	W#16#2000						
2		MW	38	"ZSW2_ENC"	HEX	W#16#0200						
3		MD	16	"Positionvalue"	HEX	DW#16#0000066	0					
4		MD	20	"Singleturn"	HEX	DW#16#000066	0					
5		MD	Z4	"Turns"	HEX	DW#16#0000000	D					
6		MD	28	"G1_XIST2"	HEX	DW#16#0000066	0					
7		MD	0	"speed"	HEX	DW#16#0000000	0					
8		MW	36	"G1_STW"	HEX	W#16#0000						
9		MW	34	"STW2_ENC"	HEX	W#16#0400						
10												
Quic	c4\9	SIMAT	IIC 3	00(1)\\Parameter de	emo	•	RUN Sym ≻ //					

Abbildung 5.12: Variablentabelle "VAT_Control" – "STW2_ENC" = 400

Schritt 2:

Geben Sie für den Steuerwert mit dem Symbolnamen "newPresetValue" den gewünschten Presetwert ein (Abbildung 5.13).

• Steuern Sie den Wert mit dem "Variable Steuern"-Button.

¥	Var - VAT_control											
Т	abe	elle	Bea	rbeit	en Einfügen Ziels	system Variable	e Ansicht Extras	Fenster Hilfe				
E												
	VAT_control @Quick 4\SIMATIC 300(1)\CPU 313C-2 DP\Parameter demo O											
	Τ	<u>/</u> (Oper	and	Symbol	Anzeigeformat	Statuswert	Steuerwert				
	1	N	IW	36	"G1_STW"	HEX	W#16#0000	W#16#0000				
	2	N	W	34	"STW2_ENC"	HEX	W#16#0400	W#16#0400				
	3	N	1D	8	"newPresetValue"	HEX	DW#16#00000555	DW#16#00000555				
	4											
	12	VAT.	_viev	w (@Quick 4\SIMATIC 3	00(1)\CPU 313C-	2 DP\Parameter demo) ONLI 🗖 🗖 🕱				
		1	Oper	rand	Symbol	Anzeigeform	at Statuswert	Steuerwert				
	1	1	WW	32	"G1_ZSW"	HEX	W#16#2000					
	2	1	WW	38	"ZSW2_ENC"	HEX	W#16#0200					
	3	1	MD	16	"Positionvalue"	HEX	DW#16#0000055	5				
	4	1	MD	20	"Singleturn"	HEX	DW#16#0000055	5				
	5	1	MD	24	"Turns"	HEX	DW#16#000000	0				
	6	1	MD	28	"G1_XIST2"	HEX	DW#16#0000055	5				
	7	1	MD	0	"speed"	HEX	DW#16#000000	0				
	8	1	WW	36	"G1_STW"	HEX	W#16#0000					
	9	1	WW	34	"STW2_ENC"	HEX	W#16#0400					
	10											
Qu	Jic	c4\SI	MA'	TIC 3	00(1)\\Parameter d	emo	\bullet	KUN Sym > //				

Abbildung 5.13: Variablentabelle "VAT_Control" – "newPresetValue"

• Mit dem "Beobachten"-Button können Sie die sich ändernden Statuswerte beobachten

Schritt 3:

Setzen Sie den Steuerwert von "G1_STW" auf den Hex-Wert: 1000 (siehe Abbildung 5.14).

Bedeutung von Hex-Wert: 1000 (Bit 12 auf "1" setzen) siehe Tabelle 6.7.

Steuern Sie den Wert mit dem "Variable Steuern"-Button.

Ľ	Var - VAT_control											
	Гab	elle	Bea	arbeit	ten Einfügen Ziels	system Variable	e Ansicht Extras	Fenster Hilfe				
	▰▯▰◼▤▯▫▫◣◾◾◗ਲ਼ ◍๙๙๙๛											
ſ	VAT_control @Quick 4\SIMATIC 300(1)\CPU 313C-2 DP\Parameter demo O											
L	\square	1	Oper	and	Symbol	Anzeigeformat	Statuswert	Steuerwert				
Т	1		MW	36	"G1_STW"	HEX	W#16#1000	W#16#1000				
н	2		MW	34	"STW2_ENC"	HEX	W#16#0400	W#16#0400				
н	3		MD	8	"newPresetValue"	HEX	DW#16#00000555	DW#16#0000555				
	4											
L												
r												
Ľ	di	VA	T_vie	w	@Quick 4\SIMATIC 30	00(1)\CPU 313C-2	2 DP\Parameter demo) ONLI 🗖 🔍 🔀				
L		1	Ope	rand	Symbol	Anzeigeforma	at Statuswert	Steuerwert				
L	1		MW	32	"G1_ZSW"	HEX	W#16#3000					
L	2		MW	38	"ZSW2_ENC"	HEX	W#16#0200					
L	3		MD	16	"Positionvalue"	HEX	DW#16#0000055	5				
L	4		MD	20	"Singleturn"	HEX	DW#16#0000055	5				
L	5		MD	24	"Turns"	HEX	DW#16#0000000	0				
L	6		MD	28	"G1_XIST2"	HEX	DW#16#0000055	5				
L	7		MD	0	"speed"	HEX	DW#16#0000000	0				
L	8		MW	36	"G1_STW"	HEX	W#16#1000					
L	9		MW	34	"STW2_ENC"	HEX	W#16#0400					
L	10											
L												
Þ												
Q	uic	k 4∖	SIMA	TIC 3	800(1)\\Parameter d	emo	•	RUN Sym > //				

Abbildung 5.14: Variablentabelle "VAT_Control" – "G1_STW" = 1000

Schritt 4:

Durch Schritt 3 ändert sich der Statuswert in der Variablentabelle "VAT_View" (siehe Abbildung 5.14) von Hex-Wert: 2000 auf den Hex-Wert: 3000.

Bedeutung von Hex-Wert: 3000 (Bit 12 und 13 auf "1" gesetzt) siehe Tabelle 6.8.

Schritt 5:

Setzen Sie den Steuerwert von "G1_STW" auf den Hex-Wert: 0000 (siehe Abbildung 5.13).

Dadurch ändert sich der Statuswert in der Variablentabelle "VAT_View" (siehe Abbildung 5.13) von Hex-Wert: 3000 wieder auf den Hex-Wert: 2000 (Bit 13 auf "1" gesetzt).

5.7 Fehlersteuerung

 Ist der Wert von G1_XIST1 ungleich dem Wert von G1_XIST2, liegt ein Fehler vor.
• Der Statuswert in der Variablentabelle "VAT_View" (siehe Abbildung 5.15) ändert sich von Hex-Wert: 2000 auf den Hex-Wert: 9000 (Bit 15 und 12 auf "1" gesetzt). Bedeutung siehe Tabelle 6.8.
Weitere Details siehe Abschnitt 6.4.5.1.
Beachten Sie den gültigen Wertebereich von: TMR-1.

Liegt ein Fehler vor (siehe Abbildung 5.15), so muss dieser quittiert werden.

Var - VAT_control													
Т	abe	elle	Be	arbeit	ten Einfügen Ziel	system Variable	e Ansicht Extras	Fenster Hilfe					
▰▯▰◨◓▯◾▫▫ヽヽヽਞਃਃਲ਼! ᅇ๛๛๙๚๛๛													
	VAT_control @Quick 4\SIMATIC 300(1)\CPU 313C-2 DP\Parameter demo O												
11	Т	1	Ope	rand	Symbol	Anzeigeformat	Statuswert	Steuerwert					
	1		MW	36	"G1_STW"	HEX	W#16#1000	W#16#1000					
11	2		MW	34	"STW2_ENC"	HEX	W#16#0400	W#16#0400					
	3		MD	8	"newPresetValue"	HEX	DW#16#00500000	DW#16#00500000					
	4												
Ľ													
r.	43			_									
	👪 VAT_view @Quick 4\SIMATIC 300(1)\CPU 313C-2 DP\Parameter demo ONLI 👝 📼 😣												
	Operand Symbol Anzeigeformat Statuswert Steuerwert												
IL		1	Ope	rand	Symbol	Anzeigeform	at Statuswert	Steuerwert					
	1	1	Ope MW	rand 32	Symbol "G1_ZSW"	Anzeigeform HEX	at Statuswert W#16#9000	Steuerwert					
	1	1	Ope MW MW	rand 32 38	Symbol "G1_ZSW" "ZSW2_ENC"	Anzeigeform HEX HEX	at Statuswert W#16#9000 W#16#0200	Steuerwert					
	1 2 3	1	Ope MW MW MD	rand 32 38 16	Symbol "G1_ZSW" "ZSW2_ENC" "Positionvalue"	Anzeigeform HEX HEX HEX	at Statuswert W#16#9000 W#16#0200 DW#16#00000555	Steuerwert					
	1 2 3 4	*	Ope MW MW MD MD	rand 32 38 16 20	Symbol "G1_ZSW" "ZSW2_ENC" "Positionvalue" "Singleturn"	Anzeigeform HEX HEX HEX HEX	at Statuswert W#16#9000 W#16#0200 DW#16#00000555 DW#16#00000555	Steuerwert					
	1 2 3 4 5	1	Ope MW MW MD MD MD	rand 32 38 16 20 24	Symbol "G1_ZSW" "ZSW2_ENC" "Positionvalue" "Singleturn" "Turns"	Anzeigeform HEX HEX HEX HEX HEX HEX	at Statuswert W#16#9000 W#16#0200 DW#16#00000555 DW#16#00000555 DW#16#00000000	Steuerwert					
	1 2 3 4 5 6		Ope MW MU MD MD MD	rand 32 38 16 20 24 28	Symbol "G1_ZSW" "ZSW2_ENC" "Positionvalue" "Singleturn" "Turns" "G1_XIST2"	Anzeigeform HEX HEX HEX HEX HEX HEX HEX	at Statuswert W#16#9000 W#16#0200 DW#16#00000555 DW#16#00000000 DW#16#00000000 DW#16#00001005	Steuerwert					
•	1 2 3 4 5 6 7		Ope MW MD MD MD MD MD	rand 32 38 16 20 24 28 0	Symbol "G1_ZSW" "ZSW2_ENC" "Positionvalue" "Singleturn" "Turns" "G1_XIST2" "speed"	Anzeigeform HEX HEX HEX HEX HEX HEX HEX HEX	at Statuswert W#16#9000 W#16#0200 DW#16#00000555 DW#16#00000000 DW#16#00001005 DW#16#00000000	Steuerwert					
•	1 2 3 4 5 6 7 8		Ope MW MD MD MD MD MD MD	rand 32 38 16 20 24 28 0 36	Symbol "G1_ZSW" "ZSW2_ENC" "Positionvalue" "Singleturn" "Turns" "G1_XIST2" "speed" "G1_STW"	Anzeigeform HEX HEX HEX HEX HEX HEX HEX HEX HEX	at Statuswert W#16#9000 W#16#0200 DW#16#00000555 DW#16#00000000 DW#16#00001000 DW#16#00000000 W#16#1000	Steuerwert					
	1 2 3 4 5 6 7 8 9		Ope MW MD MD MD MD MD MV MV	rand 32 38 16 20 24 28 0 36 34	Symbol "G1_ZSW" "ZSW2_ENC" "Positionvalue" "Singleturn" "Turns" "G1_XIST2" "speed" "G1_STW" "STW2_ENC"	Anzeigeform HEX HEX HEX HEX HEX HEX HEX HEX HEX HEX	at Statuswert W#16#9000 W#16#0200 DW#16#00000555 DW#16#00000000 DW#16#00000000 DW#16#00000000 W#16#1000 W#16#0400	Steuerwert					
	1 2 3 4 5 6 7 8 9 10		Ope MW MD MD MD MD MD MV MV	rand 32 38 16 20 24 28 0 36 34	Symbol "G1_ZSW" "ZSW2_ENC" "Positionvalue" "Singleturn" "Turns" "G1_XIST2" "speed" "G1_STW" "STW2_ENC"	Anzeigeform HEX HEX HEX HEX HEX HEX HEX HEX HEX HEX	at Statuswert W#16#9000 W#16#0200 DW#16#00000555 DW#16#00000000 DW#16#00001005 DW#16#0000000 W#16#0000000 W#16#0000 W#16#0400	Steuerwert					
	1 2 3 4 5 6 7 8 9 10		Ope MW MD MD MD MD MD MV	rand 32 38 16 20 24 28 0 36 34	Symbol "G1_ZSW" "ZSW2_ENC" "Positionvalue" "Singleturn" "Turns" "G1_XIST2" "speed" "G1_STW" "STW2_ENC"	Anzeigeform HEX HEX HEX HEX HEX HEX HEX HEX HEX HEX	at Statuswert W#16#9000 W#16#0000555 DW#16#00000555 DW#16#00000000 DW#16#00000000 DW#16#00000000 W#16#1000 W#16#0400	Steuerwert					
	1 2 3 4 5 6 7 8 9 10		Ope MW MD MD MD MD MD MV	rand 32 38 16 20 24 28 0 36 34	Symbol "G1_ZSW" "ZSW2_ENC" "Positionvalue" "Singleturn" "Turns" "G1_XIST2" "speed" "G1_STW" "STW2_ENC"	Anzeigeform HEX HEX HEX HEX HEX HEX HEX HEX HEX HEX	at Statuswert W#16#9000 W#16#0200 DW#16#00000555 DW#16#00000000 DW#16#00000000 W#16#00000000 W#16#00000000 W#16#0400	Steuerwert					

Abbildung 5.15: Variablentabelle "VAT_View" – Fehlercode in G1_XIST2

Setzen Sie den Steuerwert von "G1_STW" auf den Hex-Wert: 8000 (siehe Abbildung 5.16). Wiederholen Sie diesen Vorgang bis alle Fehler quittiert sind.

Bedeutung von Hex-Wert: 8000 (Bit 15 auf "1" setzen) siehe Tabelle 6.7.

Zum Schluss setzen Sie den Steuerwert von "G1_STW" wieder auf den Hex-Wert: 0000.

M	Var - VAT_control												
	Гab	elle	Bea	rbeit	ten Einfügen Ziels	ystem Variabl	e Ansicht Extras	Fenster Hilfe					
ł													
ſ	👪 VAT_control @Quick 4\SIMATIC 300(1)\CPU 313C-2 DP\Parameter demo O 📼 📼 💌												
L	\square	1	Oper	and	Symbol	Anzeigeformat	Statuswert	Steuerwert					
L	1		NW	36	"G1_STW"	HEX	W#16#8000	W#16#8000					
L	2		NW	34	"STW2_ENC"	HEX	W#16#0400	W#16#0400					
L	3		MD	8	"newPresetValue"	HEX	DW#16#00500000	DW#16#00500000					
	4												
L													
r													
Ľ	dí.	VA	T_viev	N I	@Quick 4\SIMATIC 30	0(1)\CPU 313C-	2 DP\Parameter demo) ONLI 🗖 🖻 🔀					
L		4	Oper	rand	Symbol	Anzeigeform	at Statuswert	Steuerwert					
L	1		MW	32	"G1_ZSW"	HEX	W#16#2800						
L	2		MW	38	"ZSW2_ENC"	HEX	W#16#0200						
L	3		MD	16	"Positionvalue"	HEX	DW#16#0000055	4					
L	4		MD	20	"Singleturn"	HEX	DV/#16#0000055	4					
L	5		MD	24	"Turns"	HEX	DW#16#000000	0					
L	6		MD	28	"G1_XIST2"	HEX	DW#16#0000055	4					
L	7		MD	0	"speed"	HEX	DW#16#000000	0					
L	8		MW	36	"G1_STW"	HEX	W#16#8000						
L	9		MW	34	"STW2_ENC"	HEX	W#16#0400						
L	10												
L													
Q	uic	k 4\	SIMA'	TIC 3	00(1)\\Parameter de	mo	•	<mark>RU</mark> N Sym≻ //					

Abbildung 5.16: Variablentabelle "VAT_View" – Fehler in G1_XIST2 quittiert

 In der Variablentabelle VAT_View sind "Positonvalue" (G1_XIST1) und "G1_XIST2" wieder gleich. Die Fehler wurden quittiert.
 Dadurch ändert sich der Statuswert in der Variablentabelle "VAT_View" (siehe Abbildung 5.13) von Hex-Wert: 9000 auf den Hex-Wert: 2800 (Bit 13 und 11 auf "1" gesetzt).

5.8 Auslesen der Diagnose

Das Abholen der Diagnose durch den DP-Master erfolgt in der Regel automatisch, ohne dass eine Programmierung nötig ist. Die Verarbeitung und Protokollierung auftretender Fehler muss jedoch im Steuerungsprogramm erledigt werden. Wird dies nicht erledigt, kann die Steuerung unter Umständen automatisch in einen sicheren Zustand wechseln.

 Es wird davon abgeraten die Diagnosedaten einfach zu verwerfen um das Stoppen der Steuerung zu vermeiden. Gegebenenfalls sind Ma ßnahmen erforderlich um den sicheren Betrieb einer Anlage zu gew ährleisten.
 Stellen Sie Ihre Diagnoseauswertung sicher, damit die Gültigkeit der Werte garantiert ist.

5.9 S7-Beispielprogramm

6 Drehgeber – Klasse 4

6.1 Allgemeines

Das Encoder Profil 4.1 beschreibt die Drehgeberklassen 3 und 4. Wie die Klasse 1 enthält auch die Klasse 3 lediglich die Basisfunktionalität, die für einen Drehgeber benötigt wird. Klasse-4-Funktionen sind in einem Klasse-3-Gerät optional, wohingegen ein Klasse-4-Drehgeber sämtliche Klasse-4-Funktionen unterstützen muss.

Das Encoder Profil 4.1 basiert auf dem Antriebsprofil PROFIdrive 4.1. Die relevanten Drehgeber Funktionen aus PROFIdrive wurden nahezu unverändert in das Drehgeberprofil übernommen, so dass eine weitgehende Kompatibilität erreicht wurde. Da PROFIdrive für die Kompatibilität mit PROFINET ausgelegt wurde, wird die Portierung der Steuerungssoftware von PROFIBUS-DP nach PROFINET erleichtert.

• Das Encoder Profil 4.1 nutzt neben DP-V0 auch DP-V1- und DPV2-Funktionen.

6.2 Konfiguration

Die entsprechenden Konfigurationsdaten für einen Klasse-4-Drehgeber sind der Tabelle 6.1 zu entnehmen.

Bezeichnung	Telegramm	Bedeutung
Telegram 81	81	Eingangsdaten (6 Wörter): Slave-Lebenszeichen, Preset + Sensor parking, 32-Bit- Position, 32-Bit-Position od. Fehlercode Ausgangsdaten (2 Wörter): Master-Lebenszeichen, Preset + Sensor parking
Telegram 82	82	Eingangsdaten (7 Wörter): 81 + 16-Bit-Geschwindigkeit Ausgangsdaten (2 Wörter): Master-Lebenszeichen, Preset + Sensor parking
Telegram 83	83	Eingangsdaten (8 Wörter): 81 + 32-Bit-Geschwindigkeit Ausgangsdaten (2 Wörter): Master-Lebenszeichen, Preset + Sensor parking
Telegram 84	84	Eingangsdaten (10 Wörter): Slave-Lebenszeichen, Preset + Sensor parking, 64-Bit- Position, 32-Bit-Position od. Fehlercode, 32-Bit- Geschwindigkeit Ausgangsdaten (2 Wörter): Master-Lebenszeichen, Preset + Sensor parking
Telegram 59000 (81 with debug)	59000	Eingangsdaten (7 Wörter): 81 + Debug Ausgangsdaten (3 Wörter): Master-Lebenszeichen, Preset + Sensor parking Debug

Tabelle 6.1: Konfigurationsdaten

• WDGA-Drehgeber unterstützen alle 5 Konfigurationen

6.2.1 Telegrammstrukturen

Die Telegrammstrukturen die für die Konfiguration des Klasse-4-Drehgebers verwendet werden können, sind der Tabelle 6.2 zu entnehmen.

- Zur Bedeutung der Steuer- und Zustandsworte siehe Abschnitt 6.4.
- Die Konfigurationstelegramme spiegeln sich im "HW Konfig"-Fenster von STEP7 wieder (siehe Abschnitt 5.3).

Nir	Dir					Date	nwort				
INF.	Dir.	1	2	3	4	5	6	7	8	9	10
	SPS -> FNC	STW2_	G1_								
81		ENC	STW								
	FNC -> SPS	ZSW2_	G1_	G1 >	(IST1	G1 X	XIST2				
		ENC	ZSW	<u> </u>							
	SPS -> ENC	STW2_	G1_								
82		ENC	STW								
		ZSW2_	G1_	G1 X		G1 X					
		ENC	ZSW	01_/		01_/	1012				
		STW2_	G1_								
83	SPS->ENC	ENC	STW								
03		ZSW2_	G1_	G1_XIST1		01.3		NIC	тр		
	ENC -> 5P5	ENC	ZSW			GI_/	NIS 12				
		STW2_	G1_								
94	3P3-> ENC	ENC	STW								
04		ZSW2_	G1_		C (1)	4070			// OT O	NIC	T D
	ENC -> 5P5	ENC	ZSW		GI_/	1513		GI_/	1512	1115	I_D
		G1_>	(IST_								
860	SFS->ENC	PRES	ET_A								
000		G1)		NIIS	тв						
	LINC -> OF S	01_/			ī_D						
	SPS -> ENC	STW2_	G1_	DEBUG							
59000		ENC	STW	_STW							
00000	ENC -> SPS	ZSW2_	G1_	G1 >	(IST1	G1 X	XIST2	DEBUG			
		ENC	ZSW	01_/		01_/		_ZSW		-	

Tabelle 6.2: Telegrammstruktur 81-84 und 59000

- Standard-Telegramme (81-84) aus dem PROFIdrive-Profil (siehe Abschnitt 7.15.2).
- Geräteherstellerspezifisches Telegramm (59000). Siehe PROFIdrive-Profil unter Abschnitt 7.15.2).
- Das Debugsteuerwort ist hier zusätzlich implementiert (siehe Abschnitt 7.16).

6.2.2 Signalliste

Die folgende Tabelle 6.5 zeigt eine Übersicht der Steuer- und Zustandswörter. Details entnehmen Sie den folgenden Abschnitten unter 6.4.

Abkürzung	Bedeutung	Daten	Länge [bit]
G1_STW	Steuerwort	Ausgangsdaten	16
	Sensor 1 control word		
STW2_ENC	Master-Lebenszeichen	Ausgangsdaten	16
	Encoder Control word 2		
G1_ZSW	Statusword	Eingangsdaten	16
	Sensor 1 status word		
G1_XIST1	32-Bit-Positionswert	Eingangsdaten	32
	Sensor 1 position actual value 1		
G1_XIST2	32-Bit-Positionswert od. Fehlercode	Eingangsdaten	32
	Sensor 1 position actual value 2		
G1_XIST3	64-Bit-Positionswert	Eingangsdaten	64
	Sensor 1 position actual value 3		
NIST_A	16-Bit-Geschwindigkeit	Eingangsdaten	16
	Speed actual Value A		
NIST_B	32-Bit-Geschwindigkeit	Eingangsdaten	32
	Speed actual Value B		
ZWS2_ENC	Slave-Lebenszeichen	Eingangsdaten	16
	Encoder Status word 2		

Tabelle 6.3: Signalliste – Übersicht

6.3 Parametrierung

Da die Reihenfolge der Parameterblöcke beliebig gewählt werden kann ist die Octetnummer ebenfalls von der Reihenfolge abhängig. Um die tatsächliche Octetnummer eines Parameters zu ermitteln, ist der entsprechende Offset zu addieren. Beispielsweise 11, wenn dieser Block direkt auf die DP-V1-Parameter folgt. Die einzelnen Parameter werden im Folgenden erläutert.

Die Tabelle 6.6 und Tabelle 6.7 zeigen den Parameterblock für die Drehgeberparameter.

Parameter	Datentyp	Octet	Wertebereich
Blocklänge	Unsigned 8	1	21 oder 41
Blocktyp	Unsigned 8	2	immer 129
Slot	Unsigned 8	3	immer 2
Reserviert		4	immer 0
Class 4 functionality	Bit	5 / Bit 1	Enabled
			disabled
G1_XIST1 Preset control	Bit	5 / Bit 2	Enabled
			disabled
Scaling function control	Bit	5 / Bit 3	Enabled
			disabled
Alarm channel control	Bit	5 / Bit 4	Enabled
			disabled
Compatibility mode	Bit	5 / Bit 5	Enabled
			disabled

© Wachendorff Automation GmbH & Co. KG

Parameter	Datentyp	Octet	Wertebereich				
Reserviert		5 / Bit 5	0				
Measuring units per revolution	Unsigned 32	6 – 9	2 2 ¹⁴ für Drehgeber mit 14 Bit physikalischer Auflösung				
Total measuring range	Unsigned 32	10 – 13	Multiturn: 2 2 ³² – 1 Singleturn: immer gleich MUPR				
Maximum Master Sign-Of-Life failures	Unsigned 8	14	1 255				
Speed measuring unit	Unsigned 8	15	Steps / s Steps/100 ms Steps/10 ms RPM				
Reserviert		16 – 21	immer 0				
Measuring units per revolution 64Bit (upper half)	Unsigned 32	22 – 25	Immer 0 (für Drehgeber mit physikalischer Auflösung kleiner 32 Bit)				
Measuring units per revolution 64Bit (lower half)	Unsigned 32	26 – 29	Immer gleich MUPR (für Drehgeber mit physikalischer Auflösung kleiner 32 Bit)				
Total measuring range 64Bit (upper half)	Unsigned 32	30 – 33	Multiturn: $2 \dots 2^{32} - 1$ Singleturn: immer 0				
Total measuring range 64Bit (lower half)	Unsigned 32	34 – 37	Multiturn: 2 2 ³² – 1 Singleturn: immer gleich MUPR				
Reserviert		38 – 41	immer 0				

Tabelle 6.4:	Parameterblock	für Drehgeber	parameter – Teil 1

Tabelle 6.5: Parameterblock für Drehgeberparameter – Teil 2

6.3.1 Code Sequence

Die Drehrichtung der Drehgeberwelle (mit Blick auf die Welle), bei der sich der Positionswert erhöht kann im Uhrzeigersinn (clock wise – CW) oder gegen den Uhrzeigersinn (counter clock wise – CCW) eingestellt werden.

i	 Die Klasse-4-Funktionen müssen eingeschaltet sein, sonst ist dieser Parameter außer Funktion. Somit wäre die positive Drebrichtung immer im Ubrzeigersinn 								
000	 Die positive Drehrichtung gilt immer mit Blick auf die Drehgeberwelle. 								

6.3.2 Class 4 functionality

Die Klasse-4-Funktionen können ein- oder ausgeschaltet werden. Bei deaktivierten Klasse-4-Funktionen kann kein Preset durchgeführt werden. Die positive Zählrichtung ist im Uhrzeigersinn und die Skalierung entspricht der Standardeinstellung laut Drehgeberbezeichnung.

© Wachendorff Automation GmbH & Co. KG

6.3.3 G1_XIST1 preset control

Sind die Klasse-4-Funktionen aktiv wirkt sich der Preset auf die Positionswerte in G1_XIST2 und G1_XIST3 aus. Die Auswirkung auf den Positionswert in G1_XIST1 kann durch diesen Parameter separat ein- oder ausgeschaltet werden.

6.3.4 Scaling function control

Sind die Klasse-4-Funktionen eingeschaltet, kann hiermit die Skalierungsfunktion einund ausgeschaltet werden. Bei deaktivierten Klasse-4-Funktionen bleibt auch die Skalierung immer inaktiv. Bei deaktivierter Skalierung gilt die Standardskalierung laut Drehgeberbezeichnung.

6.3.5 Alarm channel control

Dieser Parameter hat ausschließlich im Kompatibilitätsmodus ("Compatibility mode") eine Funktion. Bei deaktiviertem "Alarm channel control" wird über die Diagnose nur die 6 byte lange Standarddiagnose ausgegeben, um die Buslast zu verringern. Ohne Kompatibilitätsmodus wird immer die volle Diagnose ausgegeben.

6.3.6 Compatibility mode

Der Kompatibilitätsmodus kann ein- oder ausgeschaltet werden, welcher die Kompatibilität zur älteren Drehgeberprofilversion 3.1 herstellt. Die entsprechenden Funktionalitäten sind der Tabelle 6.6 zu entnehmen.

Funktion	Kompatibilität ein	Kompatibilität aus			
Control by PLC	Wird ignoriert	Die Steuerworte warden			
(STW2_ENC Bit 10)		nur ausgewertet, wenn			
		das Bit 1 ist.			
Control requested	Immer 0	Immer 1			
(ZWS2_ENC Bit 9)					
Maximum Master	Wert kann in der	Wert kann nur in P925			
Sign-Of-Life failures	Parametrierung geändert	geändert werden			
	werden				
Alarm channel control	Kann deaktiviert werden	Immer aktiv			
P965 - Profilversion	3.1	4.1			

Tabelle 6.6: Compatibility mode

6.3.7 Measuring units per revolution

"Measuring units per revolution" bestimmt die Anzahl der Inkremente pro Umdrehung der Drehgeberwelle. Wenn der Gesamtmessbereich groß genug eingestellt wurde, zeigt der Drehgeber nach 360 einen um diesen Wert erhöhten Positionswert an. Siehe auch Abschnitt 3.2.5.

Der Wert muss größer oder gleich 2 sein und kann maximal so groß wie die physikalische ST-Auflösung des Drehgebers oder $2^{32} - 1$ sein.

Soll der Wert für TMR_{max} größer als 2³² – 1 eingestellt werden, muss der Parameter "64bit-MUPR" verwendet werden. Hierzu muss das Telegramm 84 mit dem 64-Bit-Positionswert ausgewählt sein (siehe Tabelle 6.1).

Da 64-Bit-Werte von den Projektierungstools nicht unterstützt werden müssen, wurde der Parameter in der GSD-Datei auf zwei Teile aufgeteilt. Der "upper half"-Teil berechnet sich aus der Ganzzahldivision des tatsächlich gewünschten Werts durch 2³². Der "lower half"-Teil ist der Rest der Ganzzahldivision. Die Parametrierung wird zurückgewiesen, wenn der 64-Bit-Wert und der 32-Bit-Wert ungleich Null und unterschiedlich sind, oder wenn beide Werte gleich Null sind.

• Maximaler physikalischer Wert für die ST-Auflösung des Drehgebers beträgt 14Bit.

6.3.8 Total measuring range

Der Parameter "Total measuring range" bestimmt den Gesamtmessbereich des Drehgebers. Wenn der Positionswert den Gesamtmessbereich überschreitet, beginnt die Zählung erneut bei null. Siehe auch Abschnitt 3.2.5.

Der Wert muss größer oder gleich 2 sein und kann maximal $2^{32} - 1$ sein.

Soll der Wert für TMR_{max} größer als 2³² – 1 eingestellt werden, muss der Parameter "64Bit-TMR" verwendet werden. Hierzu muss das Telegramm 84 mit dem 64-Bit-Positionswert ausgewählt sein (siehe Tabelle 6.1).

Da 64-Bit-Werte von den Projektierungstools nicht unterstützt werden müssen, wurde der Parameter in der GSD-Datei auf zwei Teile aufgeteilt. Der "upper half"-Teil berechnet sich aus der Ganzzahldivision des tatsächlich gewünschten Werts durch 2³². Der "lower half"-Teil ist der Rest der Ganzzahldivision. Die Parametrierung wird zurückgewiesen, wenn der 64-Bit-Wert und der 32-Bit-Wert ungleich Null und unterschiedlich sind, oder wenn beide Werte gleich Null sind.

Die Defaulteinstellungen für die "Measuring units per revolution (MUPR)" und "Total measuring range in measuring units (TMR)" werden kundenspezifisch gewählt (Auflösung gemäß des Bestellschlüssels; ST: 1 . . . 14 Bit; MT: 1 . . . 39 Bit).

© Wachendorff Automation GmbH & Co. KG

; ,	 Für Singleturndrehgeber muss der Gesamtmessbereich gleich der Anzahl der Inkremente pro Umdrehung sein. Skalierbare ST-Auflösung ≤ physikalischer ST-Auflösung Maximaler physikalicher Wert für die ST-Auflösung des Drehgebers beträgt 14 Bit.
000	 Skalierbare MT-Auflösung ≤ physikalischer MT-Auflösung Maximaler physikalicher Wert für die MT-Auflösung des Drehgebers beträgt 39Bit Klasse 4: TMR_{max} = 2³² – 1 bzw. 2⁶⁴ – 1 für 64-Bit-Parametrierung (Für MT: 39-Bit-Auflösung)

Defaulteinstellungen: MUPR = ST / TMR = ST x MT

6.3.9 Maximum Master Sign-Of-Life failures

Der Parameter "Maximum Master Sign-Of-Life failures" funktioniert nur im Kompatibilitätsmodus. Wenn der Kompatibilitätsmodus inaktiv ist, kann stattdessen P925 verwendet werden. Der Parameter dient dazu die Obergrenze des Fehlerzählers des isochronen Modus auf das 10-fache dieses Werts festzulegen. Siehe Abschnitt 7.14.

6.3.10 Speed measuring unit

Mit Hilfe des Parameters "Speed measuring unit" kann die Einheit des Geschwindigkeitswerts in NIST_A oder NIST_B festgelegt werden. Die Einstellungen "Steps/xx" (xx = s, 10ms oder 100ms) bewirken, dass der Geschwindigkeitswert die Anzahl der Inkremente im entsprechenden Zeitintervall anzeigt. "RPM" bewirkt, dass der Geschwindigkeitswert die Anzahl der Umdrehungen pro Minute anzeigt.

6.4 Datenaustausch

6.4.1 Telegrammstruktur

Die Telegrammstruktur ist je nach Konfiguration unterschiedlich. Siehe hierzu Abschnitt 6.2.

6.4.2 G1_STW

Die Ausgangsdaten G1_STW werden von der Steuerung an den WDGA-Drehgeber zyklisch übertragen. Der Aufbau von G1_STW ist der Tabelle 6.7 zu entnehmen.

	Output-Data														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ack sensor error	Activate parking	Req abs value	Req preset	Relative preset mode	0	0	0	0	0	0	0	0	0	0	0

Tabelle 6.7: G1_STW - Ausgangsdaten

Bit "Ack sensor error":

Acknowledging a sensor error – Ist das Bit "1", wird der Fehlercode von G1_XIST2 quittiert.

Bit "Activate parking":

Activate parking sensor – Ist das Bit "1", wird die "Parking-Sensor"-Funktion aktiviert (Unterdrückung der Fehlerausgabe).

Bit "Req abs value":

Request absolute value cyclically – Ist das Bit "1", wird in G1_XIST2 die Position ausgegeben.

Bit "Req preset":

Request Preset – Mit Setzen des Bits auf "1", wird der Preset-Vorgang im durchgeführt. Ist "Preset executed" gesetzt soll "Req preset" wieder gelöscht werden.

Bit "Relative preset mode":

Relative preset mode – Ist das Bit "1", wird der Preset relativ ausgeführt. Damit wird der "Preset value" als "Offset value" auf den aktuellen "Position value" hinzuaddiert.

Ist das Bit "0", wird der Preset absolut ausgeführt. Der "Position value" wird auf den "Preset value" gesetzt.

6.4.2.1 "Activate parking" – Sensor parken

Mit Hilfe "Activate parking" des Steuerworts (G1_STW – Bit 14) kann der DP-Master den Sensor parken. In diesem Zustand ist "Parking active" des Zustandsworts (G1_ZSW – Bit 14) gesetzt. Der Positionswert ist immer ungültig und die Fehlerbehandlung des Drehgebers ist deaktiviert.

Diese Funktion dient dazu den Sensor während des Betriebs auszutauschen ohne den Feldbus zu unterbrechen oder Fehler auszulösen.

i	 Diese Funktion ist für DP-Slaves gedacht, die die Feldbuslogik in die Bushaube kapseln, so dass der Sensor von der Bushaube getrennt werden kann, ohne die Buskommunikation zu beeinträchtigen. Bei WDGA-Drehgebern befindet sich die Feldbuslogik im Sensorgehäuse. Wird die Bushaube abgezogen, antwortet der Drehgeber folglich nicht mehr auf Anfragen und die aktive Terminierung funktioniert nicht mehr. Die Datenleitungen A und B bleiben jedoch intakt.
---	---

6.4.2.2 "Relative preset mode" – Preset absolut/relativ

Der DP-Master hat die Möglichkeit nach einer Referenzfahrt auf einen Referenzpunkt den skalierten Positionswert des Drehgebers auf einen bestimmten Wert zu setzen. Die Presetfunktion sollte nur im Stillstand ausgeführt werden um sicherzustellen, dass die Referenzposition möglichst genau mit der physikalischen Referenz überein stimmt. Zusätzlich zur klassischen absoluten Presetfunktion enthält das Encoder Profil 4.1 auch eine relative Presetfunktion, die den Presetwert als vorzeichenbehaftete Zahl versteht und diese auf den Positionswert aufaddiert.

Der Modus der Presetfunktion wird mit "Relative preset mode" des Steuerworts (G1_STW – Bit 11) bestimmt. Um die Funktion auszulösen setzt der DP-Master "Req preset" (G1_STW – Bit 12). Sobald der Drehgeber "Preset executed" des Zustandsworts (G1_ZSW –Bit 12) setzt, kann der DP-Master "Req preset" des Steuerworts (G1_STW – Bit 12) wieder löschen.

Daraufhin löscht der Drehgeber G1_STW – Bit 12, womit die Funktion dann beendet ist. Siehe Abbildung 6.1.

Abbildung 6.1: Modus der Presetfunktion - "Relative preset mode"

Auf den Preset- und Offsetwert kann mit den azyklischen Parametern P65000 und P65001.8 zugegriffen werden.

Der Offsetwert kann nicht direkt beschrieben werden, da dieser sich immer aus dem Presetwert und der aktuellen Position errechnet.

Die 64-Bit-Varianten können unter P65002 und P65003.1 gefunden werden.

Die 64-Bit-Variante hat immer denselben Wert wie der 32-Bit-Parameter, besitzt jedoch einen erweiterten Wertebereich.

6.4.3 G1_ZSW

Die Eingangsdaten G1_ZSW werden vom WDGA-Drehgeber zyklisch an die Steuerung übertragen. Der Aufbau von G1_ZSW ist der Tabelle 6.8 zu entnehmen.

	Input-Data														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Sensor error	Parking active	Transm abs value	Preset executed	Error ack-req detected	0	0	0	0	0	0	0	0	0	0	0

Bit "Sensor error":

Sensor error – Ist das Bit "1", beinhaltet G1_XIST2 an Stelle des Positionswertes einen Fehlercode.

Bit "Parking active":

Parking sensor active – Ist das Bit "1", ist die "Parking-Sensor"-Funktion aktiv.

Bit "Transm abs value":

Transmit absolute value cyclically – Ist das Bit "1", wird in G1_XIST2 der Positionswert ausgegeben.

Bit "Preset executed":

Preset executed – Ist das Bit "1", ist der Preset-Vorgang im Drehgeber erfolgt. Dieses Bit invertiert das "Req preset" von G1_STW und wird danach automatisch zurückgenommen.

Bit "Error ack-req detected":

Requirement of error acknowledgement detected – Ist das Bit "1", muss ein Fehler quittiert werden.

6.4.4 G1_XIST1

Der Parameter "G1_XIST1 Preset Control" (siehe Abschnitt 6.3.3) kann verwendet werden um zu verhindern, dass die Presetfunktion eine Auswirkung auf G1_XIST1 hat.

6.4.5 G1_XIST2

 G1_XIST2 hat eine Doppelfunktion und zeigt entweder den 32-Bit-Positionswert oder einen Fehlercode in Abhängigkeit von "Transm abs value" (G1_ZSW – Bit 13) und"Sensor error" (G1_ZSW – Bit 15) an.

Zur Quittierung von Fehlern siehe Abschnitt 6.4.3. Bei einer TMR größer 32 Bit und ohne Fehlersituation ist dieser Wert sowie "Transm abs value" (G1_ZSW – Bit 13), 0. Die Presetfunktion wirkt sich immer auf den Positionswert in G1_XIST2 aus.

© Wachendorff Automation GmbH & Co. KG

6.4.5.1 G1_XIST2 – Fehlersteuerung

"Request absolute value" (G1_STW – Bit 13) wird verwendet um die zusätzliche Übertragung des Positionswertes in G1_XIST2 anzufordern. Da der Drehgeber außer im Fehlerfall dauerhaft die Position auch über dieses Wort ausgibt, wird dieses Bit ignoriert.

Ein vorhandener Fehler wird durch "Sensor error" (G1_ZSW – Bit 15) angezeigt. "Acknowledge sensor error" (G1_STW – Bit 15) wird verwendet um den aktuell in G1_XIST2 angezeigten Fehler zu quittieren. Als Antwort auf die Anforderung setzt der Drehgeber "Error acknowledge request detected" (G1_ZSW – Bit 11). Der DP-Master kann nun die Anforderung in "Acknowledge sensor error" (G1_STW – Bit 15) wieder löschen.

Die Funktion ist abgeschlossen, wenn der Drehgeber "Error acknowledge request detected" (G1_ZSW – Bit 11) wieder löscht. Im fehlerfreien Fall löscht der Drehgeber ebenfalls "Sensor error" (G1_ZSW – Bit 15), setzt "Transmit absolute value" (G1_ZSW – Bit 13) und zeigt im G1_XIST2 wieder den Positionswert. Siehe Abbildung 6.2.

Abbildung 6.2: Zustandsdiagramm G1-XIST2-Fehlersteuerung - fehlerfreier Fall

Besteht der Fehler weiterhin, ändert sich nichts. Für den Fall, dass noch andere Fehler bestehen, ändert sich lediglich der Fehlercode (siehe Abbildung 6.3).

Abbildung 6.3: Zustandsdiagramm G1_XIST2-Fehlersteuerung - Fehlerfall

	 Ein absoluter Positionswert in G1_XIST2 wird durch "Transmit absolute value" (G1_ZSW – Bit 13) angezeigt. Ein Fehlercode in G1_XIST2 wird durch "Sensor error" (G1_ZSW – Bit 15) angezeigt.
000	 Sind "Sensor error" und "Transmit absolute value" 0, enthält G1_XIST2 keinen gültigen Wert. Sensor error" und "Transmit absolute value" sind niemals gleichzeitig gesetzt.

6.4.6 G1_XIST3

Die Presetfunktion wirkt sich immer auf diesen Wert aus.

6.4.7 NIST_A & NIST_B

• NIST_A und NIST_B zeigen die aktuelle Geschwindigkeit als vorzeichenbehafteten 16- bzw. 32-Bit-Wert an.

Dreht sich die Welle in positiver Drehrichtung, ist auch der Geschwindigkeitswert positiv. Die Einheit der Geschwindigkeit lässt sich in der Parametrierung einstellen (siehe Abschnitt 6.3.10)

6.4.8 Debug_STW & Debug_ZSW

Siehe Abschnitt 7.16.

6.4.9 STW2_ENC & ZSW2_ENC

In STW2_ENC (Ausgangsdaten) befindet sich in den Bits 12-15 das "Master-Lebenszeichen" des Isochronen Modus (siehe Tabelle 6.9).

	Output-Data														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Master	Lebenszeichen		0	Control by PLC	0	0	0	0	0	0	0	0	0	0

Tabelle 6.9: STW2_ENC

Das "Slave-Lebenszeichen" (Eingangsdaten) für IsoM befindet sich in den Bits 12-15 von ZSW2_ENC (siehe Tabelle 6.10).

	Input-Data														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Slave	Lebenszeichen		0	0	Control requested	0	0	0	0	0	0	0	0	0

Tabelle 6.10: ZSW2_ENC

• Weitere Details siehe Abschnitt 7.14 und 6.9.

6.4.9.1 Control by PLC/request - Steuerpriorität

Eine optionale Funktion für einen Klasse-4-Drehgeber, ist das Ändern der Steuerpriorität auf einen anderen Kanal. Normalerweise liegt die Steuerpriorität beim DPM1 über den Kanal des zyklischen Datenaustauschs. Über diesen Kanal kann der DP-Master zum einen über "Control by PLC" (STW2_ENC – Bit 10) angeben, ob seine Steuerwörter gültig sind und somit ausgewertet werden sollen. Zum anderen zeigt der DP-Slave dem DP-Master über "Control requested" des Zustandsworts an, ob seine Steuerwörter ausgewertet werden.

Im Kompatibilitätsmodus existiert diese Funktion nicht, daher wird "Control by PLC" des Steuerworts (STW2_ENC – Bit 10) ignoriert und "Control requested" des Zustandsworts (ZSW2_ENC – Bit 9) ist immer 0. Die Steuerwörter werden somit immer ausgewertet.

 Das Ändern der Steuerpriorität auf einen anderen Kanal wird vom WDGA-Drehgeber nicht unterstützt

6.5 Diagnose

Details zum Diagnosetelegramm sind der Tabelle 6.11 zu entnehmen.

Datenblock	Octet	Beschreibung
Standarddiagnose	1 6	DP-V0-Diagnose.
Identifier related diagnosis	7 8	Kennungsbezogene Diagnose, wobei nur Bit 1 verwendet wird.
Module status	9 13	Modulstatus, wobei nur die Bits 2 und 3 verwendet werden.
Channel related diagnosis	14 16	Kanalbezogene Diagnose, wobei der Block nur bei einem kommenden Fehler zu sehen ist. Fehlercodes in Octet 15: 5: Temperatur zu hoch 9: Fehler 16: maximale Drehzahl überschritten 22: Positionsfehler 24: EEPROM-Fehler 25: Testfehler (siehe Abschnitt 8.16)
Diagnosis alarm	17 21 (kommend) 14 18 (gehend)	Diagnosealarm Fehlercodes in Octet 20 (17): 1: Singleturnkommunikation gestört 2: Multiturnkommunikation gestört 3: EEPROM-Kommunikation gestört 4: Interner Singleturnfehler 5: Interner Multiturnfehler 6: CRC-Fehler im EEPROM 7: Magnetische Feldstärke zu schwach 8: Magnetische Feldstärke zu hoch 9: Testfehler (siehe Abschnitt 8,16)

Tabelle 6.11: Diagnosetelegramm

6.6 I&M-Funktionen

6.6.1 I&MO

Der I&M0-Datenblock ist als einziger für alle DP-V1-Geräte verpflichtend. Er kann als einziger nicht durch den Anwender verändert werden. Die Tabelle 6.12 zeigt die entsprechenden Funktionen.

Name	Datentyp	Octet	Beschreibung
Reserviert	Octet string [10]	1 10	Immer 0
MANUFACTURER_ID	Unsigned 16	11 12	Für Wachendorff Automation: 0x027B
ORDER_ID	Visible string [20]	13 32	Die Bestellnummer des Geräts. Da die Bestellnummer mehr als 20 Stellen hat, steht hier immer "WDGA-MT-DP" bzw. "WDGA-ST- DP" für Singleturnvarianten.
SERIAL_NUMBER	Visible string [16]	33 48	Die Seriennummer des Drehgebers im ASCII-Code.
HARDWARE_VERSION	Unsigned 16	49 50	Die Revisionsnummer des Drehgebers im ASCII-Code.
SOFTWARE_VERSION	1 Char, 3 Unsigned 8	51 54	Die Softwareversion. 3 z.B.: V1.0.0. Der Buchstabe wird im ASCII-Code geliefert, die Ziffern jedoch nicht.
REVISION_COUNTER	Unsigned 16	55 56	Dieser Zähler wird jedes Mal um eins erhöht, wenn einer der beschreibbaren I&M-Datenblöcke geändert wird.
PROFILE_ID	Unsigned 16	57 58	Für das Encoder Profil 4.1: 0x3D00
PROFILE_SPECIFIC_TYPE	Unsigned 16	56 60	Multiturn: 1 Singleturn: 0
IM_VERSION	2 Unsigned 8	61 62	Immer 1.1
IM_SUPPORTED	Unsigned 16 (Bit Array)	63 64	Jedes Bit steht für einen unterstützten I&M-Datenblock. Bei WDGA: 0x001A

Tabelle 6.12: I&M0

6.6.2 I&M1

Die I&M1-Funktionalitäten sind der Tabelle 6.13 zu entnehmen.

Name	Datentyp	Octet	Beschreibung
Reserviert	Octet string [10]	1 10	Immer 0
TAG_FUNCTION	Visible string [32]	11 42	Eine Beschreibung der Funktion
			oder Aufgabe des Geräts.
TAG_LOCATION	Visible string [22]	43 64	Beschreibt, wo das Gerät zu finden
			ist.

Tabelle 6.13: I&M1

6.6.3 I&M2

Wird auf Grund eines zur Zeit der Entwicklung ungeklärten Spezifikationskonflikts zwischen der Profile Guideline für I&M der PNO und der ISO-Norm für Profibus nicht unterstützt.

6.6.4 I&M3

Die I&M3-Funktionalitäten sind der Tabelle 6.14 zu entnehmen.

Name	Datentyp	Octet	Beschreibung
Reserviert	Octet string [10]	1 10	Immer 0
DESCRIPTOR	Visible string [54]	11 64	Kundenspezifische Bedeutung.

Tabelle 6.14: I&M3

6.6.5 I&M4

Die I&M4-Funktionalitäten sind der Tabelle 6.15 zu entnehmen.

Name	Datentyp	Octet	Beschreibung
Reserviert	Octet string [10]	1 10	Immer 0
SIGNATURE	Visible string [54]	11 64	Kundenspezifische Bedeutung.
			Muss nicht ASCII-Kodiert sein.
			Unbenutzte Bytes sollten 0 sein.

Tabelle 6.15: I&M4

© Wachendorff Automation GmbH & Co. KG

6.7 Azyklischer Parameterzugriff

6.7.1 Grundlagen

Der azyklische Parameterzugriff des Drehgebers nutzt die Funktion "Base Mode Parameter Access – Global" aus der PROFIdrive-Spezifikation und ist äquivalent zur Funktion von Antrieben oder Umrichtern mit PROFIdrive. In PROFIBUS-DP geschieht der Parameterzugriff über die MS1- oder MS2-Kommunikationsbeziehung, wobei die MS1-Verbindung optional ist.

In der Regel sollten diese Parameter nicht durch den Parametriermaster verändert werden müssen. Parameter werden grundsätzlich in solche mit globaler oder lokaler Gültigkeit eingeteilt.

Die lokalen Parameter sind nur über den Slot 1 ansprechbar, da sie sich auf das dort virtuell gesteckte Drehgebermodul beziehen.

Die Globalen Parameter beziehen sich auf das Gesamtgerät und sind dementsprechend auch über den Slot 0 des Grundgeräts erreichbar.

Jeder Parameter hat eine eindeutige Parameternummer (PNU) und einen Datentyp. Handelt es sich bei dem Datentyp um ein Array, wird zusätzlich zur PNU ein Subindex zur Adressierung der einzelnen Felder verwendet. Hierbei ist es möglich, mehrere Felder des Arrays mit einer Abfrage auszulesen.

Bei Zeichenketten wird der Subindex verwendet um die einzelnen Zeichen anzusprechen.

Somit können lange Zeichenketten auch über mehrere Abfragen verteilt ausgelesen werden.

Bei einfachen Datentypen ist der Subindex 0.

Beim Multi-Parameterzugriff kann außerdem auf mehrere PNUs mit einer Abfrage zugegriffen werden. Dazu müssen entsprechend viele Parameteradressen, und im Fall eines Schreibzugriffs die Werte, übergeben werden.

- Grundsätzlich gehört zu einem Parameter neben seinem Wert auch eine strukturierte Beschreibung. Diese wird vom Drehgeber jedoch nicht unterstützt.
- Da diese Parameter nicht bei jedem Aufstarten automatisch gesetzt werden, gehen sie verloren, wenn sie nicht über P971 oder P977 permanent gespeichert werden.

Der asynchrone Parameterzugriff wird mit Hilfe der DP-V1-Funktionen DS_WRITE und DS_READ realisiert. Die folgende Tabelle 6.16 zeigt die Kodierung.

Bedeutung DP-V1	Bedeutung BMPA-G	Bedeutung Parameter	Größe (Octets)	Wert	Erklärung
Funktion_num			1	0x5F 0x5E	DS_WRITE DS_READ
Slot_num			1	0, 1	Encoder unit
Index			1	0x2F	Process Data ASE
Length			1	Х	Length of data
Data Max 238	ReqRef		1	Х	Slave mirrors value sent from master
	ReqID		1	0x01 0x02 0x81 0x82	Request Change Neg req res Neg chg res
	EO		1	0 1	Global Global + Lokal
	Num Param		1	1 39	Number of parameters in multi parameter access
	1 st Param Adress	Attr	1	0x10 0x20 0x30	Value Description Text
		Num Elem	1	0, 1 1 234	Value Array + String
		PNU	2	1 65535	Paramnumber
		Subindex	2	0 65535	Index of array
	Nth Param Adress		(N – 1) 6		
	1 st Param Value	Format	1	Х	Zero Datatype Error
		Num values	1	Х	Number of values from array (equal to Num Elem)
		Mth value	Х	Х	
		1 st value	(M – 1) · M		
	Nth Param Value				
				Х	Arithmetic sum from DA to DU (only lowest byte)
				0x16	End delimiter

Tabelle 6.16: Kodierung der asynchronen Parameteranforderungen

Der Datentyp eines Parameterwerts wird im Octet "Format" kodiert. Die möglichen Werte zeigt nachfolgende Tabelle 6.17.

Format	Datentyp	Beschreibung
0x04	Integer 32	Vorzeichenbehaftete 32-Bit-Ganzzahl.
0x06	Unsigned 16	Vorzeichenlose 16-Bit-Ganzzahl
0x07	Unsigned 32	Vorzeichenlose 32-Bit-Ganzzahl
0x09	VisibleString	ASCII-Kodierte Zeichen in einem Array.
		Unbenutzte Zeichen haben den Wert 0x20, dies entspricht
		einem Leerzeichen
0x0A	OctetString	Array aus Bytes
0x37	Integer 64	Vorzeichenbehaftete 64-Bit-Ganzzahl
0x40	Zero	Der Wert hat eine Größe von 0 Bytes und keine Bedeutung.
		Wird verwendet um bei einer negativen Antwort auf einen
		Multi-Parameterzugriff, die fehlerfreien Zugriffe zu
		überspringen, so dass die Fehlermeldung dem richtigen
		Parameter zugeordnet werden kann
0x44	Error	Der zurückgegebene Wert ist nicht der Wert des Parameters,
		sondern eine Fehlermeldung

Tabelle 6.17: Kodierung – Format

Die möglichen Fehlermeldungen, die anstelle des Parameterwerts gesendet werden können, sind der Tabelle 6.18 zu entnehmen.

Code	Name	Bedeutung
0x0000	InvalidParamNum	Ungültige PNU: die angeforderte PNU ist nicht implementiert
0x0001	ReadOnly	Es wurde versucht auf eine PNU zu schreiben, die nur gelesen werden kann
0x0002	ValueRangeExceeded	Der geschriebene Wert liegt nicht im gültigen Wertebereich
0x0004	NoArray	Es wurde eine Subindex größer als 1 angegeben, obwohl der Parameter kein Array ist
0x0005	IncorrectDatatype	Der Datentyp des zu schreibenden Werts passt nicht zum Datentyp des Parameters
0x0006	SetToZeroOnly	Auf den Parameter darf nur der Wert "0" geschrieben werden
0x0007	DescripionReadOnly	Die Parameterbeschreibung kann nur gelesen werden
0x0009	DescriptionNotAvailable	Die Parameterbeschreibung kann nicht gelesen werden
0x000F	TextarrayNotAvailable	Die Textbeschreibung des Parameters kann nicht gelesen werden
0x0011	WrongState	Der Parameterzugriff kann im aktuellen Zustand des Drehgebers nicht durchgeführt werden. Wurde beispielsweise eine 64-Bit-Presetwert gesetzt, kann er nicht über den 32-Bit-Parameter ausgelesen werden.
0x0015	ResponseTooLong	Die Antwort passt nicht in den verbleibenden freien Platz im Telegramm.
0x0016	InvalidParamAddr	Die Parameteradresse im Anforderungstelegramm ist ungültig. Das Feld Attr muss den Wert 0x10 haben.
0x0018	ValueNumbersInconsistent	Die Anzahl übertragener Werte beim Schreibzugriff muss mit der Anzahl der Elemente in der Parameteradresse übereinstimmen. Ist der Parameter kein Array, muss die Anzahl übertragener Werte 1 sein.
0x0019	InvalidEO	Zugriff auf lokale Parameter nur über Slot 1 möglich. Das Feld EO im Anfragetelegramm muss eins sein.

Tabelle 6.18: Fehlercodes

6.7.2 Parameter lesen

Die Abbildung 6.4 zeigt ein Beispiel für das Lesen der ersten zwei Elemente von PNU 980 (siehe Tabelle 6.27). Die hervorgehoben gedruckten Octets sind die Nutzdaten des DS_READ- bzw. DS_WRITE-Dienstes.

Abbildung 6.4: Parameter lesen - PNU 980

Die Tabelle 6.19 zeigt die Leseanforderung des DP-Masters. Die Bedeutung der hervorgehoben gedruckten Octets aus Abbildung 6.4 wird hier beschrieben.

Bedeutung BMPA-G	Bedeutung Struktur	Größe	Wert	Erklärung
ReqRef		1	1	Ohne Bedeutung. Master gibt
				beliebigen wert vor
ReqID		1	0x01	Leseanforderung
EO		1	1	Zugriff auf globale und lokale Daten
Num Param		1	1	Einen Parameter lesen
Param	Attr	1	0x10	Den Wert des Parameters lesen
Address				
	Num Elem	1	2	Zwei Elemente des Arrays lesen
	PNU	2	03D4h = 980d	Die Parameternummer
	Subindex	1	0	Der Startindex der auszulesenden
				Elemente

Die Tabelle 6.20 zeigt die Antwort des DP-Slaves. Die Bedeutung der hervorgehoben gedruckten Octets aus Abbildung 6.4 wird hier beschrieben.

Bedeutung BMPA-G	Bedeutung Struktur	Größe	Wert	Erklärung		
ReqRef		1	1	Ohne Bedeutung. Slave spiegelt den Wert aus der Anforderung		
ReqID		1	0x01	Leseanforderung		
EO		1	1	Zugriff auf globale und lokale Daten		
Num Param		1	1	Einen Parameter lesen		
1 st Param Value	Format	1	6	Unsigned integer 16 Bits		
	Num values	1	2	Anzahl der folgenden Werte		
	1 st value	2	0x0396	Subindex 0: 918		
	2 nd value	2	0x0397	Subindex 1: 919		

Tabelle 6.20: DS_Read – Slave

6.7.3 Parameter schreiben

Die Abbildung 6.5 zeigt ein Beispiel für das Schreiben eines neuen Presetwerts. Die hervorgehoben gedruckten Octets sind die Nutzdaten des DS_READ- bzw. DS_WRITE-Dienstes.

Abbildung 6.5: Setzen des Presetwertes auf 12345678d über P65000

Die Tabelle 6.21 zeigt die Leseanforderung des DP-Masters. Die Bedeutung der hervorgehoben gedruckten Octets aus Abbildung 6.5 wird hier beschrieben.

Bedeutung BMPA-G	Bedeutung Struktur	Größe	Wert	Erklärung
ReqRef		1	5	Ohne Bedeutung. Master gibt beliebigen Wert vor
ReqID		1	0x02	Schreibanforderung
EO		1	1	Zugriff auf globale und lokale Daten
Num Param		1	1	Einen Parameter lesen
Param Address	Attr	1	0x10	Den Wert des Parameters lesen
	Num Elem	1	0	P65000 ist kein Array
	PNU	2	FDE8h = 65000d	Die Parameternummer
	Subindex	2	0	Der Startindex der auszulesenden Elemente
1 st Param Value	Format	1	4	Signed integer 32 Bits
	Num values	1	1	Anzahl der folgenden Werte
	1 st value	2	00BC614Eh = 12345678d	Presetwert

Tabelle 6.21: DS_Write – Master

Die Tabelle 6.22 zeigt die Antwort des DP-Slaves. Die Bedeutung der hervorgehoben gedruckten Octets aus Abbildung 6.4 wird hier beschrieben.

Bedeutung BMPA-G	Bedeutung Struktur	Größe	Wert	Erklärung
ReqRef		1	5	Ohne Bedeutung. Slave spiegelt den
				Wert aus der Anforderung
ReqID		1	0x02	Schreibanforderung
EO		1	1	Zugriff auf globale und lokale Daten
Num Param		1	1	Einen Parameter lesen
1 st Param	Format	1	40	Zero: Es folgen keine Werte nach der
Value				Anzahl
	Num values	1	01	Anzahl geschriebener Werte

Tabelle 6.22: DS_Read – Slave

6.7.4 Fehlerbehandlung

Angenommen der Gesamtmessbereich des Drehgebers wäre kleiner als 12345678d. In diesem Fall würde der Drehgeber auf die Anfrage des letzten Beispiels 6.7.3 mit einer Fehlermeldung reagieren. Der Presetwert muss kleiner als TMR sein.

Die Anforderung ist dem Beispiel aus 6.7.3 identisch. Die Antwort des Drehgebers zeigt die folgende Tabelle 6.23.

© Wachendorff Automation GmbH & Co. KG

Bedeutung BMPA-G	Bedeutung Struktur	Größe	Wert	Erklärung		
ReqRef		1	5	Ohne Bedeutung. Slave spiegelt den Wert aus der Anforderung		
ReqID		1	0x82	Schreibanforderung nicht erfolgreich		
EO		1	1	Zugriff auf globale und lokale Daten		
Num Param		1	1	Einen Parameter lesen		
1 st Param Value	Format	1	44	Es folgt ein Fehlercode		
	Num values	1	01	Anzahl Werte		
	1 st value	2	0x0002	Fehlercode: Wert außerhalb des gültigen Bereichs.		

Tabelle 6.23: Fehlerbehandlung – Slave

6.7.5 PROFIdrive-Parameter

Die PROFIdrive-Parameter finde	n Sie in den	Tabelle 6.24 bis	Tabelle 6.27.

PNU	Bedeutung	Туре	R/W	L/G	Subindex	Bit	Funktion	Beschreibung
918	Node address	Unsigned 16	R	G				Die PROFIBUS- Slave-Adresse des Drehgebers
919	Encoder Unit system number	Visible String [16]	R	L				Immer "WDGA- MT-DP"
922	Telegram selection	Unsigned 16	R	L				Nummer des konfigurierten E-/A- Telegramms
925	Max. Master Sign-Of-Life failures	Unsigned 16	RW	L				Die Grenze des Fehlerzählers wird auf das zehnfache dieses Wertes gesetzt
964	Encoder Unit identification	Unsigned 16	R	G	0		Manufacturer	PNO manufacturer ID wie I&M: Immer 0x027B
					1		Encoder Unit Type	Immer 0
					2		Software version	z.B.0x0102 für Version 1.2
					3		Firmware date (year)	Jahr der Firmware- erstellung: yyyy
					4		Firmware date (day/month)	Tag und Monat der Firmware- erstellung: ddmm
					5		Number of Encoder Objects	Anzahl der EO innerhalb der EU: Immer 1

Tabelle 6.24: Telegrammstruktur – Teil 1

PNU	Bedeutung	Туре	R/W	L/G	Sub index	Bit	Funktion	Beschreibung
965	Profile identification number	Octet String [1]	R	G				Byte 1: 61d (Encoderprofil) Byte 2: Version: 41d (Kompatibilitäts- modus: 31d)
971	Transfer to NVM	Unsigned 16	RW	G				Um das Speichern zu starten eine 1 schreiben. Der Wert wird auf 0 gesetzt sobald das Speichern abgeschlossen ist. Gespeichert werden die Werte von P65000, P65002 und P925.
972	Device reset	Unsigned 16	RW	G				Standardwert: 0. Schreiben von 2 hat keinen Effekt. Schreiben von 1 führt einen, Gerätereset aus, wodurch der Wert wieder auf 0 springt.
974	Base Mode Parameter Access	Unsigned 16	R	G	0		Max block length	Maximale Länge der Parameteran- forderung: 240 Bytes
	service identification				1		Max number of parameter requests per multi- parameter request	Anzahl möglicher Parameterzugriffe pro Parameteran- forderung: 39
					3		Max latency per request	0: keine Angabe X: Multipliziert mit 10ms ergibt sich die max. Verarbeitungs- zeit im schlechtesten Fall, ohne Leitungsverzögerung auf dem Bus. Berücksichtigt den Fall des Multi- Parameterzugriffs.

Tabelle 6.25: Telegrammstruktur – Teil 2

PNU	Bedeutung	Туре	R/W	L/G	Sub index	Bit	Funktion	Beschreibung
975	Encoder object identification	Unsigned 16	R	L	0		Manufac- turer	PNO manufacturer ID wie I&M: immer 0x027B
					1		EO type	Immer 0
					2		Software-	z.B.: 0x0102 für
							version	Version 1.2
					3		date (year)	anr der Firmware- erstellung: 2014d für das Jahr 2014
					4		Firmware date (day/month)	Tag und Monat der Firmwareerstellung: 0x0a09 für den 10. September
					5		EO type class	Immer 5: Encoder Interface
					6		EO sub class	Immer 0xC000 Encoder Klasse 3 und 4 unterstützt
						05		Immer 0
						613		Immer 0
						14		Immer 1
						15	50.10	Immer 1
							E0-1D	Encoderobjekts, mit dem über die Parameteranfor- derung gesprochen wurde. Immer 1
977	Transfer to NVM	Unsigned 16	RW	G				Um das Speichern zu starten eine 1 schreiben. Der Wert wird auf 0 gesetzt sobald das Speichern abgeschlossen ist. Gespeichert werden die Werte von P65000, P65002 und P925.
979	Sensor format	Unsigned 32	R	L	0		Header	Beschreibt die Struktur des Parameters. Immer 0x00005111
						03	Version	Diese Version wird inkrementiert, wenn kompatible Änderungen an der Struktur vorge- nommen werden. Immer 1
						47	Version	Diese Version wird inkrementiert, wenn die Struktur auf inkompatible Weise verändert wird. Immer 1

Tabelle 6.26: Telegrammstruktur – Teil 3

PNU	Bedeutung	Туре	R/W	L/G	Sub index	Bit	Funktion	Beschreibung
979	Sensor format	Unsigned 32	R	L	0	811	Number of sensors	Anzahl beschriebener Sensoren: Immer 1
						1215	Number of indices per sensor	Anzahl subindizes pro sensor: Immer 5
						1631	Reserved	Immer 0
					1		Sensor type	
						0	Linear sensor	Immer 0: rotary sensor (Drehgeber)
						1	Absolute sensor	Immer 1: Der Ab- solutwert steht so- fort zur Verfügung
						2	64-Bit- Position	Immer 1: 64-Bit- Positionsinformation ist verfügbar
						330	Reserved	Immer 0
						31	Data valid	1: Daten der Sensors sind gültig
					2		Sensor resolution	Aktuelle Auflösung in Schritten pro Umdrehung
					3		Shift factor G1_XIST1	Immer 0. Der Positionswert in G1_XIST1 ist immer rechts ausgerichtet
					4		Shift factor G1_XIST2	Immer 0. Der Positionswert in G1_XIST2 ist immer rechts ausgerichtet
					5		Determin- able revo- lutions	Anzahl unterscheid- barer Umdrehungen des Drehgebers
980	Number List of defined parameters		R		018			Liste aller verfüg- barer Parameter. Jedes Element enhält eine PNU. Das Ende der Liste enthält die 0

Tabelle 6.27: Telegrammstruktur – Teil 4

6.7.6 Herstellerspezifische Parameter

Die herstellerspezifischen Parameter entnehmen Sie der Tabelle 6.28.

PNU	Bedeutung	R/W	L/G	Beschreibung
1000	Test 1	RW	G	Nur für Produktionszwecke, nicht beschrieben
1001	Test 2	RW	G	Nur für Produktionszwecke, nicht beschrieben

Tabelle 6.28: Herstellerspezifische Parameter

© Wachendorff Automation GmbH & Co. KG

6.7.7 Drehgeberspezifische Parameter

PNU	Bedeutung	Туре	R/W	L/G	Sub index	Bit	Funktion	Beschreibung
65000	Preset value	Integer 32	RW	G				Die Presetfunktion des zyklischen Datenaustauschs setzt den Positionswert auf diesen Wert. Beim absoluten Preset wird dieser Wert als vorzeichenlos angesehen.
65001	Operating parameters	Array [12] Integer 32	RO	G	0		Header	Beschreibt die Struktur des Parameters. Immer 0x000C0101.
						07	Version	Diese Version wird inkrementiert, wenn kompatible Änderungen an der Struktur vorgenommen
						815	Version	Diese Version wird inkrementiert, wenn die Struktur auf inkompatible Weise verändert wird. Immer 1.
						1623	Number of indices	Anzahl vorhandener Subindexe. Immer: 12
					- 1	2431	Reserved	Immer 0
					1	0	Sequence	Funktionen aktiviert wurden
						1	Class 4 function	Zeigt ob Klasse 4 Funktionen aktiviert wurden
						2	G1_XIST1 preset control	Zeigt ob sich die Presetfunktion auf den Positionswert G1_XIST1 auswirkt
						3	Scaling function control	Zeigt ob die volle Diagnose ausgegeben wird

Die drehgeberspezifischen Parameter finden Sie in den Tabelle 6.29 bis Tabelle 6.31.

Tabelle 6.29: Drehgeberspezifische Parameter – Teil 1

PNU	Bedeutung	Туре	R/W	L/G	Sub index	Bit	Funktion	Beschreibung
65001	Operating parameters	Array [12] Integer	RO	G	1	4	Alarm channel control	Zeigt ob die volle Diagnose ausgegeben wird
		32			5	Compatibility mode	Zeigt ob der Kompatibilitätsmod	
						67	Percented	
					2	0,7	Foulte	Zeigt Febler, die
								sich auf den Positionswert
						0	Position error	Der Positionswert ist nicht korrekt
						1	Undervoltage	Immer 0
						2	Overvoltage	Immer 0
						3	Shortcircuit	Immer 0
						4	Commissioning diagnostic	Immer 0
						5	Memory error	Der EEPROM funktioniert nicht
						631	Reserved	Immer 0
					3		Supported faults	Belegung wie Faults. Immer 0x00000021
					4		Warnings	Warnungen haben keine Auswirkung auf den Positionswert
						0	Frequency exceeded	Maximale Drehzahl wird überschritten
						1	Overtemperture	Temperatur zu hoch
						2	Light control reserve	Immer 0
						3	CPU Watchdog status	Immer 0
						4	Operating time limit warning	Immer 0
						5	Battery voltage low	Immer 0
						6	Reference point not reached	Immer 0
						731	Reserved	Immer 0
					5		Supported warnings	Belegung der Warnings Immer: 0x00000003
					6		Encoder profile version	Immer 0x0041

Tabelle 6.30: Drehgeberspezifische Parameter – Teil 2

PNU	Bedeutung	Туре	R/W	L/G	Sub index	Bit	Funktion	Beschreibung
65001	Operating parameters	Array [12] Integer 32	RO	G	7		Operating time	Betriebsstunden- zähler in 0,1 Stundenintervall- en. P65001.6: unabhängig vom Kompatibilitäts- modus
					8		Offset value	Der Offset, der durch die Presetfunktion berechnet wird
					9		Measuring unit per revolution	Die parametrierte Auflösung
					10		Total measuring range	Der parametrierte Gesamtmess- bereich
					11		Speed measuring unit	Die parametrierte Einheit des Geschwindigkeits- wertes
65002	Preset value 64-Bit	Integer 64	RW	G				Die 64-Bit-Version des Presetwerts
65003	Operating	Array []	RO	G	0	0	Header	Immer 0x40101
	status 64 Bit	Integer 64				1	Offset value 64 Bit	Die 64-Bit-Verion des Offsetwerts
						2	Measuring unit per revolution 64 Bit	Die 64-Bit-Version der parametrierten Auflösung
						3	Total measuring range 64 Bit	Die 64-Bit-Version des parametrierten Gesamtmess- bereichs

Tabelle 6.31: Drehgeberspezifische Parameter – Teil 3

6.8 Slave-Querverkehr – DxB

Der Slave-Querverkehr wird vom Drehgeber als Publisher unterstützt. Siehe Kapitel Profibus 7.13.

Isochroner Modus – IsoM 6.9

6.9.1 Zustandsautomat

WDGA mit Profibus Schnittstelle

Um den isochronen Modus vollständig zu starten, durchläuft der Drehgeber zusätzlich zu den normalen PROFIBUS-DP Zuständen, weitere Zustände, die nur den isochronen Modus betreffen. Der Ablauf für WDGA-Drehgeber wird durch die PROFIdrive-Spezifikation vorgegeben. Für andere DP-Slaves kann der Ablauf abweichen.

Abbildung 6.6: Isochrone State-Machine und DP-State-Machine

6.9.2 Offline

Der "Offline"-Zustand entspricht dem PROFIBUS-DP-Zustand und kennzeichnet den Fall, dass der Drehgeber ausgeschaltet ist.

© Wachendorff Automation GmbH & Co. KG

6.9.3 Preparation Phase 1

Der "Preparation Phase 1"-Zustand umfasst die Parametrierung und Konfiguration aus PROFIBUSDP. Danach wechselt der Drehgeber in den zyklischen Datenaustausch mit dem DP-Master und gleichzeitig in den "Preparation Phase 2"-Zustand.

6.9.4 Preparation Phase 2

Im "Preparation Phase 2"-Zustand synchronisiert der Drehgeber seinen internen Takt mit dem Taktschlägertelegramm des DP-Masters. Danach ist er mit dem DP-Zyklus synchron und wechselt zur Synchronisierung des Lebenszeichenzählers.

6.9.5 Synchronization

Das "Master-Lebenszeichen" befindet sich im STW2 ENC (siehe Abschnitt 6.4.9). Das "Slave-Lebenszeichen" wird aktiviert, sobald das "Master-Lebenszeichen" um eins inkrementiert wurde. D.h. in einer isochronen Anwendung muss das Steuerungsprogramm nach der Initialisierung selbstständig damit beginnen das Lebenszeichen zu erhöhen. Der gültige Wertebereich geht von 1 bis 15. Der Wert 0 ein ungültiges Lebenszeichen. Das inkrementieren kennzeichnet eines Lebenszeichens mit dem Wert 15 führt folglich zum Wert 1.

Die Abbildung 7.10 zeigt den Ablauf der Synchronisierung. Beim Aufstarten der Anlage benötigt der DP-Master in der Regel mehr Zeit als die DP-Slaves. Die DP-Slaves initialisieren zunächst sich selbst und warten dann auf die Parametrierung und Konfiguration um in den zyklischen Datenaustausch zu wechseln. Sobald der zyklische Datenaustausch beginnt, synchronisieren sie sich mit dem Taktschlägertelegramm. Danach wird auf eine Inkrementierung des "Master-Lebenszeichens" gewartet. Da jedem DP-Slave während der Parametrierung mitgeteilt wurde, wie viele DP-Zyklen pro DP-Masterzyklus durchlaufen werden, ist nun klar, wann sich das "Master-Lebenszeichen" erneut ändern muss und wann das neue "Slave-Lebenszeichen" an den DP-Master zu übermitteln ist.

Die DP-Slaves überwachen permanent die Synchronisierung mit dem Taktschlägertelegramm auf dem Bus. Sollte der DP-Slave feststellen, dass er nicht mehr synchron läuft, wird dies durch eine Fehlermeldung in G1_XIST2 und ein Zurücksetzen des "Slave-Lebenszeichens" auf 0 gekennzeichnet. Nachdem der Fehler mit Hilfe des Bits x in STWx quittiert wurde, versucht der DP-Slave sich wieder zu synchronisieren. Damit die Synchronisierung der DP-Slaves zuverlässig funktioniert, muss die Steuerungssoftware gegebenenfalls auftretende Fehlermeldungen verarbeiten und quittieren.

6.9.6 Operation

Im "Operation"-Zustand ist der DP-Slave synchron mit dem DP-Master-Applikationszyklus. Der DP-Master kann die Eingangsdaten für Regelungsaufgaben verwenden und in Bezug zu den Eingangsdaten anderer synchroner DP-Slaves setzen.

Zum Beginn jedes DP-Master-Zykluses überprüft der Drehgeber das "Master-Lebenszeichen". Wurde es nicht korrekt inkrementiert, wird ein interner Fehlerzähler um 10 erhöht. Beim Empfang eines korrekten "Master-Lebenszeichens" wird er dagegen um eins verringert. Überschreitet der Fehlerzähler die zulässige Obergrenze, wechselt der Drehgeber zurück in den "Synchronisation-Zustand", meldet den Fehler über G1_XIST2 und setzt das "Slave-Lebenszeichen" auf 0. Sobald der Fehler quittiert wurde, wird die Synchronisierung erneut durchgeführt und der Drehgeber erreicht wieder den "Operation-Zustand".

Die Zulässige Obergrenze des Fehlerzählers kann im Kompatibilitätsmodus über die Parametrierung eingestellt werden. Ansonsten muss der azyklische Parameter P925 verwendet werden. Die Obergrenze errechnet sich aus dem parametrierten Wert mal zehn. Es kann durchaus sein, dass bei einem Wert von 3 erlaubten Lebenszeichenfehlern auch mehr Lebenszeichenfehler nicht zum Zurücksetzen des "Slave-Lebenszeichens" führen, wenn der Fehlerzähler zwischenzeitlich wieder durch korrekte "Master-Lebenszeichen" verringert wurde.

7 PROFIBUS

7.1 Allgemeines

PROFIBUS wurde 1987 von verschiedenen Firmen und Forschungseinrichtungen entwickelt. Seit 1989 ist PROFIBUS der weltweit führende Feldbus in der Automatisierung von Anlagen und Maschinen. PROFIBUS zeichnet sich besonders durch seine Anwendungsbreite aus. In entsprechenden Anwendungsprotokollen werden anwendungsspezifische Anforderungen realisiert.

Die Kommunikation lässt sich wie folgt in das ISO-OSI-Modell (ISO-Norm 7498) einordnen. Die relevanten Schichten für PROFIBUS sind die erste Schicht (Physical Layer – Layer 1), die zweite Schicht (Data Link Layer – Layer 2) und die siebte Schicht (Application Layer – Layer 7). Die Tabelle 7.1 zeigt das ISO-OSI-Modell mit den PROFIBUS-Protokollen.

ISO-OSI-Schicht	PROFIBUS		Beschreibung
Layer 7 Application Layer	PROFIBUS DP (DP-V0, DP-V1, DP-V2)		Kommunikationsprotokolle
Layer 3 – 6			
Layer 2 Data Link Layer	FDL (Fieldbus Data Link)		 FDL: Datenübertragung Dienste für Datenübertragung FMA: Management Dienste MAC: Medium-Zugriff (Master-Slave-Prinzip, Token-Passing-Prinzip)
Layer 1 Physical Layer	EIA-485 (auch: RS485)	Optisch	physikalische Realisierung der Bitübertragung: - UART-Codierung

Tabelle 7.1: ISO-OSI-Modell – PROFIBUS-DP

PROFIBUS gibt es in drei unterschiedlichen Ausführungen:

- PROFIBUS-FMS (Fieldbus Message Specification)
- PROFIBUS-DP (Dezentrale Peripherie)
- PROFIBUS-PA (Prozess-Automation)

Historisch gesehen war PROFIBUS-FMS der erste PROFIBUS, welcher auf Grund der Komplexität und geringen Übertragungseffizienz von PROFIBUS-DP abgelöst wurde. PROFIBUSFMS ist nicht mehr Bestandteil der IEC61158. PROFIBUS-DP ist der meist verwendete PROFIBUS und deckt etwa 90% der Marktanteile ab. In der IEC61158-2 sind PROFIBUS-DP und PROFIBUS-PA standardisiert.

PROFIBUS-DP ist vor allem für den schnellen Datenaustausch auf der Aktuator-/ Sensorebene konzipiert. Er kommt hauptsächlich in der Fertigungsautomation zum Einsatz. PROFIBUS-PA zeichnet sich durch die Eigensicherheit und Fernspeisung von Busteilnehmern aus. Er wird daher hauptsächlich in explosionsgefährdeten Bereichen eingesetzt. Einsatzgebiet ist die Prozessautomation.

Die Nutzerorganisation ist die "Profibus Nutzerorganisation e.V. (PNO)" und der internationale Dachverband ist "Profibus & Profinet International (PI)".

• Das Handbuch bezieht sich ausschließlich auf PROFIBUS-DP

7.2 Teilnehmer

Bei PROFIBUS wird zwischen unterschiedlichen PROFIBUS-Teilnehmern (häufig auch: Stationen genannt) unterschieden (siehe Tabelle 7.2).

Zum einen gibt es die Master und zum anderen die Slaves. Die Master (auch: aktive Teilnehmer genannt) bestimmen den Datenverkehr im PROFIBUS-Bus. Die Slaves (auch: passive Teilnehmer genannt) sind Peripheriegeräte, wie zum Beispiel ein Drehgeber. Sie dürfen erhaltene Nachrichten quittieren oder auf Anfrage eines Masters Nachrichten übermitteln. Details zum Buszugriffsverfahren finden Sie unter Abschnitt 7.4.2.

Da bei PROFIBUS unterschiedliche Ausführungen (FMS, DP oder PA) unterstützt werden, wird die entsprechende Abkürzung dem Master bzw. Slave häufig voran gestellt, wie beispielweise DP-Master und DP-Slave.

Teilnehmer	Klasse	Kurz	Beschreibung	Kommunikationsbeziehung
DP-Master	1	DPM1	- SPS (en: PLC)	MS0 (DP-Slave: DP-V0)
			zyklischer Datenverkehr und	MS1 (DP-Slave: DP-V1)
			azyklischer Datenverkehr	MM (DPM2, eher selten)
DP-Master	2	DPM2	- Konfigurier- und	MS2 (DP-Slave: DP-V1)
			Diagnosegerät	MM (DPM1, eher selten)
			- Diagnose und Para-	
			metrierung des DP-Slaves	
			- Engineeringstation (meist	
			PC-basiertes System)	
			nur azyklischer Datenverkehr	

Tabelle 7.2: Mastervarianten im DP-System

- Der Drehgeber ist ein DP-Slave
- Kommunikationsbeziehungen siehe Abschnitt 7.6

7.3 Physical Layer – Layer 1 [2]

7.3.1 Busleitung

Die PROFIBUS-Leitungen sind geschirmte und verdrillte zweiadrige Kupferleitungen. Es gibt verschiedene Ausführungstypen, welche sich im Aufbau der Adern (flexibel/starr) und/oder in der Ummantelung unterscheiden können.

Die PROFIBUS-Standardleitungen haben in der Regel eine violettfarbene Außenummantelung. Die Signalleitung A, ist in der Regel grün, und die Signalleitung B, ist in der Regel rot isoliert.

 PROFIBUS-Leitungen finden Sie auch auf unserer Internetseite unter folgendem Link: <u>www.wachendorff-automation.de</u>

In der Tabelle 7.3 finden Sie eine Übersicht der verschiedenen Ausführungstypen. Für alle Ausführungstypen gibt es auch Hybridleitungen. Diese beinhalten zusätzlich eine variable Anzahl von Kupferadern für die Versorgung.

PROFIBUS-DP-Ausführungstypen	typ. Mantel- Farbe	Verwendung
Standardleitung	violett	Innen- und/oder Außenbereich
Leitung mit PE-Mantel	schwarz	Nahrungs- und Genußmittelindustrie
Leitung zur Erdverlegung	schwarz	direkte Verlegung im Erdreich
(zusätzlicher Außenmantel)		
Schleppleitung / zur	türkis	Einsatz bei beweglichen Maschinenteilen
Girlandenaufhängung		Es sind Spezialleitungen für Schleppketten,
		Girlandenaufhägung oder
(Leitungstyp A oft nicht erfüllt, keine		Torsionsbewegungen erhältlich
maximale Netzausdehnung möglich)		

Tabelle 7.3: PROFIBUS-Leitungen – Ausführungstypen

• Stellen Sie sicher, dass Sie Ihrer Anwendung entsprechend, korrekte PROFIBUS-Leitungen einsetzen.

Die Spezifikation der Busleitung ist in der IEC 61158 festgelegt. Die elektrischen Eigenschaften (Leitungsparameter) der Busleitung, für den Leitungstyp A, sind in der Tabelle 7.4 dargestellt.

Parameter		Grenzwert
Wellenwiderstand	[Ω]	135 – 165 (von 3 – 20 MHz)
Kapazitätsbelag	[pF/m]	≤ 30
Schleifenwiderstand	[Ω/km]	≤ 110
Aderndurchmesser	[mm]	> 0,64
Adernquerschnitt	[mm²]	> 0,34

Tabelle 7.4: Leitungsparameter – Leitungstyp A

Weitere Eigenschaften welche eventuell in Ihrer Anwendung von Bedeutung sind, finden Sie in der Tabelle 7.5.

Anforderung	Eigenschaft
mechanisch	Biegeradius
mechanisch	Biegehäufigkeit
mechanisch	Zugfestigkeit
chemisch	UV-Beständigkeit
chemisch	Silikonfreiheit
chemisch	Beständigkeit gegen Mineralöle und Fette
chemisch	Zulässige Temperaturen
Brandverhalten	Halogenfreiheit
Brandverhalten	Flammwidrigkeit
Brandverhalten	Rauchgasdichte

Tabelle 7.5: Mögliche Anforderungen an die Busleitung

7.3.2 Übertragungsgeschwindigkeit

Insgesamt können 126 Teilnehmer an einem PROFIBUS-System teilnehmen. Bei maximaler Teilnehmerzahl wird der PROFIBUS in einzelne Segmente geteilt. Die Segmente können über Repeater an den PROFIBUS gekoppelt werden. Pro Segment können 32 Teilnehmer angebunden werden (der Repeater ist auch ein Teilnehmer).

Theoretisch ist die maximale Übertragungsgeschwindigkeit von dem längsten Segment abhängig. Hier gibt es dennoch weitere Möglichkeiten zur Erhöhung der Übertragungsgeschwindigkeit mit dem Einsatz von weiteren Repeatern. Werden die Leitungsparameter von dem Leitungstyp A eingehalten, so gelten die Übertragungsgeschwindigkeiten für die maximalen Segmente (siehe Tabelle 7.6).

Übertragungsgeschwindigkeit [kBit/s]	max. Segmentlänge [m]
9,6	1200
19,2	1200
45,45	1200
93,75	1200
187,5	1000
500	400
1500	200
3000	100
6000	100
12000	100

Tabelle 7.6: Übertragungsgeschwindigkeiten – Leitungstyp A

- Bei Übertragungsraten > 1500kbit=s sind grundsätzlich keine Stichleitungen erlaubt.
- Bei Übertragungsraten < 1500kbit=s sind in Abhängigkeit der Übertragungsrate verschiedene Stichleitungslängen zulässig (Für den Fall das Sie Stichleitungen verwenden, Informieren Sie sich hierzu bitte entsprechend).
- Bei Stichleitung wird keine Terminierung vorgenommen

7.3.3 Terminierung

Die Terminierung verhindert Reflexionen bei der Datenübertragung. Des Weiteren sorgt Sie für ein definiertes Ruhepotential auf der Datenleitung falls keine Teilnehmer aktiv sind. Am Anfang und Ende eines RS-485-Segmentes muss eine aktive Terminierung vorhanden sein. Die aktive Terminierung ist in der Abbildung 7.1 dargestellt.

- Die Terminierung für den WDGA entnehmen Sie bitte Abschnitt 4.4.3 bzw. 4.5.2.
- 5 V DP und GND DP sind von der Versorgungsspannung galvanisch getrennt.

Abbildung 7.1: Terminierung - Leitungstyp A

7.4 Data Link Layer – Layer 2

7.4.1 Allgemeines

Im "Data Link Layer" sind im Allgemeinen das Buszugriffsverfahren, die Datensicherung und die Übertragungsdienste beschrieben. Der "Data Link Layer" wird bei PROFIBUS als "Field Data Link" (FDL) bezeichnet.

7.4.2 Buszugriffsverfahren

Das Buszugriffsverfahren erfolgt bei PROFIBUS über das Token-Passing-Verfahren (Master-Master-Verfahren) bzw. über eine Kombination mit dem Master-Slave-Verfahren.

Beim Token-Pasing-Verfahren wird die Buszugriffsberechtigung (Token) innerhalb einer festgelegten Zeit von einem DP-Master zum nächsten weitergegeben. Die Token-Nachricht enthält die Sendeberechtigung für den entsprechenden DP-Master. Der Token-Ring ist die Verbindung zwischen verschiedenen DP-Mastern untereinander (siehe Abbildung 7.2). Dabei wird die Token-Nachricht in einer vorgegebenen Reihenfolge untereinander weitergereicht.

Beim Master-Slave-Verfahren berechtigt die Anfrage eines DP-Masters den DP-Slave für eine bestimmte Zeit auf den Bus zu senden. DP-Slaves dürfen ausschließlich auf DP-Masteranfragen antworten. Der DP-Master mit der Sendeberechtigung kann Nachrichten an die DP-Slaves senden.

Mit dem Token-Passing- und dem Master-Slave-Verfahren ist es möglich drei verschiedene Systemkonfigurationen zu realisieren. Ein reines Master-Slave-System (MS-System), ein reines Master-Master-System (MM-System) oder ein hybrides Zugriffsverfahren aus dem MS- und MM-System.

Abbildung 7.2: PROFIBUS-DP-Teilnehmer

7.5 Application Layer – Layer 7

7.5.1 Kommunikationsprotokoll – DP-V0, DP-V1, DP-V2

Historisch bedingt gibt es unterschiedliche DP-Kommunikationsprotokolle. Die Ursprungsversion ist DP-V0 (PROFIBUS DP Version 0, 1991: DIN 19245, später: EN 50170). Diese wurde in DP-V1 (PROFIBUS DP Version 1) erweitert und in einer neuen Norm festgelegt (IEC 61158). Zu dieser Version gibt es weitere Ergänzungen (PROFIBUS DP Version 2), welche ab 2002 in die IEC 61158 übernommen wurden.

In der Praxis wird in diesem Zusammenhang häufig der Begriff DP-V2 verwendet, obwohl es sich hierbei lediglich um Ergänzungen zu DP-V1 handelt. Die wesentlichen Funktionen der einzelnen Versionen, können Sie der Abbildung 7.3 entnehmen.

Time

Abbildung 7.3: Leistungsstufen-PROFIBUS-DP

Die Leistungsstufe DP-V0 stellt die Grundfunktionalitäten des Kommunikationsprotokolls zur Verfügung. Zwischen DP-Master und DP-Slave ist der "zyklische Datenaustausch" der Prozessdaten möglich. Des Weiteren stehen Parametrierung, Konfiguration und diverse Diagnosefunktionen bereit.

DP-V1 ist die Ergänzung zu DP-V0. Zusätzlich ist ein "azyklischer Datenaustausch" zwischen DP-Master und DP-Slave möglich. Dies ermöglicht die Parametrierung, Diagnose, Bedienung, Beobachtung und Alarmbehandlung der DP-Slaves parallel zum zyklischen Nutzdatenverkehr.

Die I&M-Funktionen sind höhere Dienste, welche die azyklischen Kommunikationswege (MS1 und MS2) verwenden. Dadurch werden in einem einheitlichen Format der Hersteller und die Seriennummer abrufbar gemacht. Diese Dienste gehörten ursprünglich zur DP-V2-Leistungsstufe. Heute ist es jedoch erforderlich, dass von jedem neuen DP-V1-Teilnehmer diese Dienste unterstützt werden. Weitere azyklische Dienste sind vom Geräteprofil abhängig.

DP-V2 ist eine weitere Ergänzung zu den Funktionen von DP-V0 und DP-V1. Zu den Erweiterungen gehören unter anderem der "Slave-Querverkehr (DxB)" und der "Isochronous Mode (IsoM)". Der "Slave-Querverkehr" ermöglicht einen direkten Datenaustausch der DP-Slaves untereinander. Dies ist nur möglich, wenn diese Funktion auch von dem DP-Master unterstützt wird. Der "Isochronous Mode" ermöglicht die Synchronisation der erfassten Eingangsund der ausgebenen Ausgangswerte mit dem Mastertakt. Somit haben die Prozessdaten der Anlage slaveübergreifend das gleiche Alter. Dies wird hauptsächlich für Servoantriebe benötigt. Es können weitere Funktionen wie z.B. die Uhrzeitführung zur Verfügung stehen.

7.6 Kommunikationsbeziehungen

Zwischen den Teilnehmern bestehen verschiedene Kommunikationsbeziehungen (siehe Abbildung 7.4). Es wird in MS0-, MS1- und MS2-Kommunikationsbeziehungen unterschieden.

Je nach Kommunikationsbeziehung stehen unterschiedliche Dienste zur Verfügung (siehe Abschnitt 7.6.1, 7.6.2 und 7.6.3.)

- MS0: Zyklische Datenübertragung zwischen einem DPM1 und einem DP-Slave unter Nutzung des DP-V0-Protokolls.
- MS1: Azyklische Datenübertragung zwischen einem DPM1 und einem DP-Slave unter Nutzung des DP-V1-Protokolls.
- MS2: Azyklische Datenübertragung zwischen einem DPM2 und einem DP-Slave unter Nutzung des DP-V1-Protokolls.

Abbildung 7.4: Kommunikationsbeziehungen

7.6.1 MS0-Kommunikationsbeziehung

Die MS0-Kommunikationsbeziehung Telegramme für die sind durch die entsprechenden SAPs (Service Access Points) codiert. Bei der MS0-Kommunikationsbeziehung werden folgende SAPs verwendet (siehe Tabelle 7.7).

SAP vom DP-Slave	Dienst	Funktion	DU vom Master zum Slave	DU vom Slave zum Master
Default	SRD	Data_Exchange	Output-Data	Input-Data
55 (0x37)	SRD	Set_Slave_Adr	Adresse	SC
56 (0x38)	SRD	Rd_Inp	Leer	Input-Data
57 (0x39)	SRD	Rd_Outp	Leer	Output-Data
58 (0x3A)	SRD	Global_Control	Control	-
59 (0x3B)	SRD	Get_Cfg	Leer	Konfiguration
60 (0x3C)	SRD	Slave_Diag	Leer	Diagnose
61 (0x3D)	SRD	Set_Prm	Parameter	SC
62 (0x3E)	SRD	Chk_Cfg	Konfiguration	SC

Tabelle 7.7: SAP – MS0-Kommunikationsbeziehung (Master – SAP 0x3E)

7.6.2 MS1-Kommunikationsbeziehung

Wie die MS0-Kommunikationsbeziehung wird auch die MS1-Kommunikationsbeziehung durch die Parametrierung durch einen DPM1 aufgebaut. Die Verbindung wird nicht bei Bedarf aufgebaut, sondern besteht dauerhaft.

Die Telegramme für die MS1-Kommunikationsbeziehung sind durch die entsprechenden SAPs codiert. Bei der MS1-Kommunikationsbeziehung werden folgende SAPs verwendet (siehe Tabelle 7.8).

SAP vom DP-Slave	Dienst	Funktion	DU vom Master zum Slave	DU vom Slave zum Master
50 (0x32)	SRD	Alarm_SAP	DS_Alarm_ack	
51 (0x33)	SRD	Server_SAP DS_Write_REQ	DS_Read_REQ DS_Write_RES	DS_Read_RES
53 (0x35)	SRD	Ext_User_Prm	Ext. Parameter	SC

Tabelle 7.8: SAP – MS1-Kommunikationsbeziehung (Master – SAP 0x33)

7.6.3 MS2-Kommunikationsbeziehung

Die MS2-Kommunikationsbeziehung wird von DPM2 verwendet. Bei Bedarf wird diese durch den DPM2 auf- und wieder abgebaut. Es können mehrere DPM2 zur Verfügung stehen, jedoch können durch den Slave nicht beliebig viele MS2-Kanäle bereitgestellt werden.

Die Telegramme für die MS2-Kommunikationsbeziehung sind durch die entsprechenden SAPs codiert. Bei der MS2-Kommunikationsbeziehung werden folgende SAPs verwendet (siehe Tabelle 7.9).

SAP vom DP-Slave	Dienst	Funktion	DU vom Master zum Slave	DU vom Slave zum Master
≤ 48 (0x30)	SRD	Communication_SAP	DS_xxx_REQ MS2_Abort_REQ	DS_xxx_RES
49 (0x31)	SRD	Resource_Manager _SAP	MS2_Initiate_REQ	Resource_Manager _REQ

Tabelle 7.9: SAP – MS2-Kommunikationsbeziehung (Master – SAP 0x32)

• WDGA-Drehgeber stellen zwei MS2-Verbindungen zur Verfügung.

7.7 DP-Slave – Zustandsautomat

Ein DP-Slave kann vier Zustände annehmen: "Offline", "Parameterization", "Configuration" und "Data Exchange" (siehe Abbildung 7.5).

Abbildung 7.5: Zustandsautomat – DP-Slave

Es gibt für jeden DP-Slave nur einen DPM1. Die MS0-Kommunikationsbeziehung wird durch die Parametrierung und Konfiguration aufgebaut. Der Drehgeber nimmt dabei verschiedene Zustände an. Die Arbeitsweise des Drehgebers wird kurz an Hand des Zustandsautomaten erläutert (siehe Abbildung 7.6). Die Initialisierungssequenz der MS0-Kommunikationsbeziehung des Drehgebers ist der Tabelle 7.10 zu entnehmen.

Telegramm- reihenfolge	Beschreibung
1	(Änderung der Teilnehmeradresse; optional)
2	Diagnoseanforderung, Diagnoseantwort
3	Parametrieren des Drehgebers
4	Konfiguration des Drehgebers
5	Diagnoseanforderung, Diagnoseantwort
	Sicherstellung das alles korrekt initialisiert wurde
6	Zyklischer Datenaustausch des Drehgebers

Tabelle 7.10: Initialisierungssequenz – MS0

Abbildung 7.6: Zustandsautomat – WDGA-Drehgeber

 Die zugehörigen Funktionalitäten zu Slave_Diag, Set_Prm bzw. Chk_Cfg finden Sie unter dem Kapitel Fehler! Verweisquelle konnte nicht gefunden werden..

Die Bedeutung der verschiedenen Zustände sind der Tabelle 7.11 zu entnehmen.

Zustände	Bedeutung
Power_On / Reset	Drehgeber wurde eingeschaltet oder ein Reset durchgeführt
Wait_Prm	Wait for Parameter:
	Drehgeber wartet auf die Parameter vom DP-Master
Wait_Cfg	Wait for Configuration:
	Drehgeber wartet auf das Chk_Cfg Telegramm vom Master
Data_Exch	Data Exchange:
	Drehgeber tauscht zyklisch Nutzdaten aus und antwortet auf
	Diagnoseanforderung

Tabelle 7.11: Zustände – state machine

	 Ein zyklischer Datenaustausch (z.B. senden des Positionswerts) kann nur im DATA_EXCH-Zustand erfolgen. Damit der Drehgeber in den DATA_EXCH-Zustand wechselt, erwartet er von dem DP-Master eine bestimmte Initialisierungssequenz der MS0-Kommunikationsbeziehung (siehe Tabelle 7.10). Diagnoserequests können jederzeit von jedem DP-Master abgefragt werden. Jeder DP-Master kann bei jeden DP-Slave die Konfiguration über "Get_Cfg" in jedem Zustand abfragen.
--	---

7.8 Parametrierung

7.8.1 Allgemein

Die Parametrierung ist bei PROFIBUS-DP Teil der standardisierten Aufstartphase und wird von der Steuerung bei jedem Start des DP-Slaves durchgeführt. Das heißt jeder Parameter wird von der Steuerung im Betrieb neu beschrieben. Die Konfiguration dieser Werte geschieht im Projektierungstool. Normalerweise ist die Kenntnis der genauen Struktur des Parametriertelegramms nicht notwendig. Für fortgeschrittene Anwendungen oder zur Busdiagnose kann sie jedoch nützlich sein.

 Nicht zu verwechseln mit dem azyklischen Parameterzugriff der Drehgeberklasse 4!

7.8.2 Telegrammstruktur – Standardparametrierung

Die Tabelle 7.12 zeigt die Telegrammstruktur der Standardparametrierung. Die ersten sieben Octets der Parametrierung haben bei jedem DP-Slave die gleiche Bedeutung. Zur Erläuterung der einzelnen Standardparameter wird auf die einschlägige Literatur verwiesen (Beispiel: [3]).

Parameter	Datentyp	Octet	Wertebereich
Reserviert	Bit	1 / Bit 02	Immer 0
WD_on	Bit	1 / Bit 3	0, 1
Freeze_Req	Bit	1 / Bit 4	0, 1
Sync_Req	Bit	1 / Bit 5	0, 1
Unlock_Req	Bit	1 / Bit 6	0, 1
Lock_Req	Bit	1 / Bit 7	0, 1
WD_Fact_1	Unsigned 8	2	1255
WD_Fact_2	Unsigned 8	3	1255
<i>min</i> Tsdr	Unsigned 8	4	
IdentNumber	Unsigned 16	5, 6	Immer 0x0DD2
Group_Ident	Unsigned 8	7	0255

Tabelle 7.12: Telegrammstruktur – Standardparametrierung

Bei der Klasse 4 folgen zunächst die DP-V1-Parameter und danach die Parameterblöcke für die drehgeberspezifischen und ggf. isochronen Parameter (siehe Tabelle 7.13 bzw. Tabelle 7.14). Zur Belegung der drehgeberspezifischen Parameter, siehe Kapitel 6.

7.8.3 Telegrammstruktur – DP-V1-Parameter

Auf die Standardparametrierung folgenden drei Octets, diese haben nur bei DP-V1-Geräten eine festgelegte Bedeutung. Zur Erläuterung der einzelnen DP-V1-Parameter wird auf die einschlägige Literatur verwiesen.

Parameter	Datentyp	Octet	Wertebereich
Dis_Start_Control	Bit	8 / Bit 0	0, 1
Dis_Stop_Control	Bit	8 / Bit 1	0, 1
WD_Base	Bit	8 / Bit 2	0, 1
Reserviert	Bit	8 / Bit 3, 4	ignoriert
Publisher_Enable	Bit	8 / Bit 5	0, 1
Fail_Safe	Bit	8 / Bit 6	Immer 1
DPV1_Enable	Bit	8 / Bit 7	0, 1
Chk_Cfg_Mode	Bit	9 / Bit 0	
Reserviert	Bit	9 / Bit 1	Immer 0
Enable_Update_Alarm	Bit	9 / Bit 2	Immer 0
Enable_Status_Alarm	Bit	9 / Bit 3	Immer 0
Enable_Manufacturer_Specific_Alarm	Bit	9 / Bit 4	Immer 0
Enable_Diagnostic_Alarm	Bit	9 / Bit 5	DVP1_Enable 1: 0, 1
			DVP1_Enable 0: Immer 0
Enable_Process_Alarm	Bit	9 / Bit 6	Immer 0
Enable_Pull_Plug_Alarm	Bit	9 / Bit 7	Immer 0
Alarm_Mode	Unsigned3	10 / Bit 0…2	Immer 0
Prm_Structure	Bit	10 / Bit 3	Immer 1
IsoM_Req	Bit	10 / Bit 4	0, 1
Reserviert	Bit	10 / Bit 56	Immer 0
PrmCmd	Bit	10 / Bit 7	Immer 0

Tabelle 7.13: Telegrammstruktur – DPV1-Parameter

7.8.4 Parameterblock für isochrone Parameter

Wird ein Slave für den isochronen Modus parametriert, wird der Parameterblock für den isochronen Modus an das Parametertelegramm angehängt. Da zwischen dem Ende der DPV1-Parameter und dem Anfang der isochronen Parameter weitere Parameterblöcke liegen können, muss ein entsprechender Offset zu den angegebenen Octetnummern aufaddiert werden.

Zur Erläuterung der einzelnen Parameter wird auch hier auf die einschlägige Literatur und die Dokumentation der Steuerungsprojektierung verwiesen. Siehe Abschnitt 7.14.

Parameter	Datentyp	Octet	Wertebereich WDGA
Blocklänge	Unsigned 8	1	28
Blocktyp	Unsigned 8	2	Immer 4
Slot	Unsigned 8	3	Immer 0
Reserviert		4	Immer 0
Version	Unsigned 8	5	Immer 1
T _{Base_DP}	Unsigned 32	6 – 9	375 [·1/12µs]
			750 [·1/12µs]
			1500 [·1/12µs]
			3000 [·1/12µs]
			6000 [·1/12µs]
			12000 [·1/12µs]
T _{DP}	Unsigned 16	10 – 11	12 ¹⁶ – 1 [·T _{Base_DP}]
Тмарс	Unsigned 8	12	114 [·T _{DP}]
T _{Base_IO}	Unsigned 32	13 – 16	375 [·1/12µs]
			750 [·1/12µs]
			1500 [·1/12µs]
			3000 [·1/12µs]
			6000 [·1/12µs]
			12000 [·1/12µs]
Tı	Unsigned 16	17 – 18	12 ¹⁶ – 1 [·T _{Base_IO}]
То	Unsigned 16	19 – 20	12 ¹⁶ – 1 [·T _{Base_IO}]
T _{DX}	Unsigned 32	21 – 24	12 ³² – 1 [·1/12µs]
T _{PLL_W}	Unsigned 16	25 – 26	12 ¹⁶ − 1 [·1/12µs]
T _{PLL_D}	Unsigned 16	27 – 28	12 ¹⁶ – 1 [·1/12µs]

Tabelle 7.14: Parameterblock für isochrone Parameter

7.9 Konfiguration

Die Konfiguration ist bei PROFIBUS-DP, ebenfalls wie die Parametrierung, Teil der standardisierten Aufstartphase und wird von der Steuerung bei jedem Start des DP-Slaves durchgeführt. Sie dient dazu das Format und den Inhalt der Telegramme des Datenaustauschs festzulegen. Die Konfiguration erfolgt im Projektierungsprogramm.

Grundsätzlich werden zwei Arten von DP-Slaves unterscheiden: modulare und nichtmodulare.

Modulare DP-Slaves bestehen aus einem Grundgerät mit mehreren Steckplätzen und der Profibusanbindung. In das Grundgerät lassen sich mehrere Module in unterschiedlicher Reihenfolge hineinstecken. Das Format des zyklischen Datenaustauschs hängt dann unter Umständen von der Reihenfolge der gesteckten Module ab. Durch die Konfiguration wird festgelegt wie groß die Ein- und Ausgabewerte der einzelnen Module sind, welche aneinandergereiht die Datenaustauschtelegramme ergeben.

Nicht modulare DP-Slaves haben nur eine einzelne bestimmte Aufgabe und dementsprechend auch nur eine gültige Konfiguration.

7.10 Diagnose

Die Diagnosefunktion eines DP-Slaves spielt bei der Aufstartphase eine Rolle, da der DP-Master den Wechsel der PROFIBUS-Zustände und zum anderen Fehlerereignisse im zyklischen Datenaustausch überwachen kann.

Der DP-Slave kann das Vorhandensein aktualisierter Diagnosedaten im "function code" des Antworttelegramms des Datenaustauschs markieren. Erkennt der DP-Master ein solches Telegramm kann der DP-Master die Diagnose anfordern. Die ersten 6 Octets der Diagnoseantwort haben eine über alle DP-Slaves gleichbleibende Struktur. Zur Übersichtlichkeit wird der SD2-Telegrammrahmen nicht erläutert.

Das Abholen der Diagnose durch den DP-Master erfolgt in der Regel automatisch, ohne dass eine Programmierung nötig ist. Die Verarbeitung und Protokollierung auftretender Fehler muss jedoch im Steuerungsprogramm erledigt werden. Wird dies nicht erledigt, kann die Steuerung unter Umständen automatisch in einen sicheren Zustand wechseln.

Die Tabelle 7.15 und Tabelle 7.16 zeigen die Standarddiagnose eines DP-Slaves.

Name	Datentyp	Octet	Beschreibung
Station_Non_Existent	Bit	1 / Bit 0	Wird vom Master gesetzt und an das
			Steuerungsprogramm weitergegeben,
			wenn der Slave nicht antwortet.
Station_Not_Ready	Bit	1 / Bit 1	Der Slave befindet sich nicht im
			zyklischen Datenaustausch
Cfg_Fault	Bit	1 / Bit 2	Fehler in der Konfiguration der
			Telegrammstruktur.
Ext_Diag	Bit	1 / Bit 3	1: Ein ernstzunehmender Fehler liegt
			vor. I.d.R gibt es erweiterte Diagnose-
			daten.
			0: Es liegt kein ernstzunehmender
			Fehler vor. Es können dennoch
			erweiterte Diagnosedaten vorliegen.
Not_Supported	Bit	1 / Bit 4	Der Slave wurde mit einer Funktion
			parametriert, die er nicht unterstützt.
Invalid_Slave_Response	Bit	1 / Bit 5	Wird vom Master an das Steuerungs-
			programm gemeldet, wenn die Slave-
			Antwort nicht verarbeitet werden konnte.
Prm_Fault	Bit	1 / Bit 6	Fehler in der Parametrierung.
Master_Lock	Bit	1 / Bit /	Der Slave kann keine gultigen Daten
			senden. Der Master wiederholt die
			Diagnoseantrage solange dieses Bit
Desc. Desc.	D'(0 / D'/ 0	gesetzt ist.
Prm_Req	Bit	2 / Bit 0	Der Slave ist nicht parametriert.
Stat_Diag	Bit	2 / Bit 1	Der Slave kann keine gultigen Daten
			Senden. Der Master wiederholt die
			Diagnoseanirage solange dieses Bit
DP	Bit	2 / Bit 2	Immer 1
WD on	Bit	2 / Bit 2	Es wurde ein Watchdog parametriert
Freeze Mode	Bit	2 / Bit 3	Der Slave ist im Freeze-Modus
Sync Mode	Bit	2 / Bit 5	Der Slave ist im Sync-Modus
Reserviert	Bit	2 / Bit 6	ignorieren
Deactivated	Bit	2 / Bit 7	Wird vom Master gesetzt und an das
Deactivated		270117	Steuerungsprogramm gemeldet wenn
			die Diagnosefunktion als Ganzes
			abgeschaltet wurde
Reserviert	Bit	3/Bit0 6	ignorieren
Ext Diag Overflow	Bit	3 / Bit 7	Der Slave hat mehr Diagnosedaten als
		0, 211	übertragen werden können.
Master Add	Unsigned 8	4	Die PROFIBUS-Adresse des DPM1 ist
			255, wenn noch kein Master den Slave
			Parametriert hat.
Ident Number	Unsigned 16	5,6	PNO-Identnummer des Slaves.

Tabelle 7.15: Standarddiagnose

 Identnummer des Klasse-4-Drehgebers: 0x0DD2; Klasse-2-Drehgebers: 0x0E87

7.10.1 Erweiterte Diagnose

Die erweiterte Diagnose folgt auf die Standarddiagnose im Diagnoseantworttelegramm. Es gibt drei Arten der erweiterten Diagnose, welche grundsätzlich alle nacheinander in beliebiger Reihenfolge vorkommen können.

7.10.1.1 Identifier related diagnosis

Bei modularen DP-Slaves mit mehreren steckbaren Modulen kann bei der Konfiguration für jedes Modul die Telegrammstruktur beschrieben werden. Die kennungsbezogene Diagnose bezieht sich auf die Reihenfolge der konfigurierten Module, um anzuzeigen welches Modul einen Fehler hat.

Name	Datentyp	Octet	Beschreibung
Block_Length	Unsigned 6	1 / Bit 05	Die Länge des Diagnoseblocks
	-		einschließlich Octet 0. Wertebereich:
			232 parametriert
Selection	Unsigned 2	1 / Bit 6, 7	1: Identifier related diagnosis
Identifier_Diagnosis_Entry_1	Bit	2 / Bit 0	1: Modul 1 hat Diagnosedaten.
			0: Modul 1 hat keine Diagnose
Identifier_Diagnosis_Entry_2	Bit	2 / Bit 1	1: Modul 1 hat Diagnosedaten.
			0: Modul 1 hat keine Diagnose
Identifier_Diagnosis_Entry_3	Bit	2 / Bit 2	1: Modul 1 hat Diagnosedaten.
			0: Modul 1 hat keine Diagnose

Tabelle 7.16: Identifier related diagnosis

7.10.1.2 Channel related diagnosis

Jedes Modul eines modularen DP-Slaves kann mehrere Ein- und Ausgänge besitzen. Um Beispielsweise einen Kurzschluss auf dem analogen Ausgang eines IO-Moduls anzugeigen, eignet sich die kanalbezogene Diagnose. Da nur ein Kanal pro Diagnoseblock abgebildet werden kann, muss für jeden Kanal mit Diagnoseinformation ein kanalbezogener Diagnoseblock eingefügt werden.

Name	Datentyp	Octet	Beschreibung
Kennungsnummer	Unsigned 6	1 / Bit 05	Die Kennungsnummer des betroffenen
			Moduls (Die Blöcklänge ist immer 3).
Selection	Unsigned 2	1 / Bit 6, 7	2: channel related diagnosis.
Channel_Number	Unsigned 6	2 / Bit 05	Die Nummer des betroffenen Kanals.
Input_Output_Selection	Unsigned 2	2 / Bit 6, 7	0: reserviert
	-		1: Eingang
			2: Ausgang
			3: Ein- und Ausgang

Tabelle 7.17: Channel related diagnosis – Teil 1

Name	Datentyp	Octet	Beschreibung
Error_Type	Unsigned 5	3 / Bit 04	Die Art des Fehlers: 0: Reserviert 1: Kurzschluss 2: Spannung zu gering 3: Spannung zu hoch 4: Überlastung 5: Temperatur zu hoch 6: Leitungsbruch 7: Wertebereich überschritten 8: Wertebereich unterschritten 9: Fehler 10-15: Reserviert 16-31: Herstellerspezifisch
Channel_Type	Unsigned 3	1 / Bit 57	Der Datentyp des Kanals: 0: nicht bekannt 1: Bit 2: 2 Bit 3: 4 Bit 4: Octet 5: Wort 6: Doppelwort 7: Reserviert

Tabelle 7.18: Channel related diagnosis – Teil 2

7.10.1.3 Device related diagnosis

Die gerätebezogene Diagnose ist für reine DP-V0-Slaves inhaltlich nicht weiter spezifiziert und ist herstellerspezifisch strukturiert.

Name	Datentyp	Octet	Beschreibung
Blocklänge	Unsigned 6	1 / Bit 05	Die Länge des Diagnoseblocks
			einschließlich Octet 0.
			Wertebereich: 259.
Selection	Unsigned 2	1 / Bit 6, 7	0: device related diagnosis
Beliebige Daten	Unsigned 2	259	Der Inhalt und die Anzahl Octets hängt
			vom Hersteller und vom Gerät ab.

Tabelle 7.19: Device related diagnosis

Für DP-V1-Slaves gibt es im Gegensatz dazu eine feste Struktur der gerätebezogenen Diagnose. Es sind mehrere Statusmeldungen und Alarme definiert, von denen im Folgenden nur die für die WDGA-Drehgeber relevanten vorgestellt werden.

Der Unterschied zwischen Alarmen und Statusmeldungen ist, dass Alarme ernstzunehmende Fehler anzeigen, wohingegen Statusmeldungen eher als reine Information ohne Fehlercharakter zu interpretieren sind. Des Weiteren müssen Alarme über einen DP-V1-Dienst quittiert werden. Statusmeldungen verschwinden dagegen von selbst, sobald sie nicht mehr zutreffend sind. Das Quittieren der Alarme erledigt die Steuerung in der Regel von selbst, ohne dass das Steuerungsprogramm dafür vorgesehen sein muss. Der Vorteil dieses Mechanismus ist, dass dem DP-Master keine wichtigen Fehlermeldungen entgehen können.

7.10.2 Module status

Der Modulstatus ähnelt der kennungsbezogenen Diagnose, jedoch ist der Absender der Statusmeldung das Grundgerät, und nicht das Modul selbst. Für jedes Modul wird hier angegeben, ob die Eingangsdaten gültig sind. Zusätzlich kann hier abgelesen werden, ob an der entsprechenden Stelle des Grundgerätes das korrekte Modul gesteckt ist, oder ob es ganz fehlt.

• Nur für Klasse-4-Drehgeber relevant

Name	Datentyp	Octet	Beschreibung
Blocklänge	Unsigned 6	1 / Bit 05	Die Länge des Diagnoseblocks einschließlich Octet 0. Wertebereich: 259.
Selection	Unsigned 2	1 / Bit 6, 7	0: device related diagnosis
Status_Type	Unsigned 7	2 / Bit 06	Gibt die Art der Statusmeldung an. 2: Modul_Status
Identifier	Bit	2 / Bit 7	Gibt an, ob es sich um eine Statusmeldung oder um einen Alarm handelt. 1: Status
Slot	Unsigned 8	3	Slot des Moduls, das die Statusmeldung verursacht. Immer 0 (Grundgerät).
Status_Specifier	Unsigned 2	4 / Bit 0, 1	Gibt an, ob der Status kommt oder geht. Immer 0: nicht differenzierbar
Reserviert		4 / Bit 27	ignorieren
Modul_Status_Entry_1	Unsigned 2	5 / Bit 0, 1	 O: Modul ok, Daten gültig. 1: richtiges Modul gesteckt, Daten auf Grund eines Fehlers ungültig. 2: falsches Modul gesteckt, Daten ungültig. 3: kein Modul gesteckt, Daten ungültig.
Modul_Status_Entry_2	Unsigned 2	5 / Bit 2, 3	siehe oben

Tabelle 7.20: Module status

7.10.3 Diagnosis alarm

Der Diagnosealarm wird verwendet um beliebige herstellerspezifische Fehlercodes zu übermitteln. Die Bedeutung dieser Fehlerdcodes wird üblicherweise in der GSD-Datei hinterlegt. Absender können sowohl das Grundgerät oder jedes beliebige Modul eines Slaves sein.

• Nur für Klasse-4-Drehgeber relevant

Name	Datentyp	Octet	Beschreibung
Blocklänge	Unsigned 6	1 / Bit 05	Die Länge des Diagnoseblocks
			einschließlich Octet 0.
			Wertebereich: 259.
Selection	Unsigned 2	1 / Bit 6, 7	0: device related diagnosis
Alarm_Type	Unsigned 7	2 / Bit 06	Gibt die Art der Statusmeldung an:
	D ¹	0 / 5 / 5	1: Diagnosis_Alarm.
Identifier	Bit	2 / Bit /	Gibt an, ob es sich um eine
			Statusmeldung oder um einen Alarm
			handelt. 0: Alarm
Slot	Unsigned 8	3	Slot des Moduls, das den Alarm
			verursacht.
			0254 0. Orugalaganät
Alerm Cresifier		4 / DH 0 4	0: Grundgerat
Alarm_Specilier	Unsigned 2	4 / Bit 0, 1	Gibt an, ob der Alarm kommt oder
			geni. O: nicht difforonzierber
			1: Echlor kommt
			2: Fehler geht, kein weiterer Fehler
			3: Fehler geht, weitere Fehler
			bestehen.
Additional Acknowledge		4 / Bit 2	Gibt an. ob neben der
_ 0			Standardquittierung eine weitere
			herstellerspezifische Quittierung nötig
			ist.
			0: keine weitere Quittierung benötigt.
Sequence_Number	Unsigned 2	4 / Bit 3…7	Die Sequenznummer wird beim
			Quittieren des Alarms für den Fall
			angegeben, dass mehrere Alarme
			gleichzeitig aktiv sein können.
			Immer 0, wenn nur ein Alarm
			gleichzeitig aktiv sein kann.
Alarm_Data_Description		5	Herstellerspezifischer Bereich, der den
			Fehler beschreibt. Die Bedeutung
			kann in der GSD-Datei hinterlegt
			werden.

Tabelle 7.21: Diagnosis alarm

• Beim Klasse-4-Drehgeber wird im Diagnosealarm ein Byte Alarm_Data_Description gesendet (siehe Tabelle 6.11).

7.11 Datenaustausch

Nach der Parametrierung und der Konfiguration des DP-Slaves, befindet er sich im zyklischen Datenaustausch mit dem DP-Master. Das Format der ausgetauschten Telegramme entspricht der Konfiguration durch den DP-Master.

© Wachendorff Automation GmbH & Co. KG

7.12 I&M-Funktionen

Die I&M-Funktionen dienen einerseits dazu den DP-Slave sowie den Hersteller des Geräts eindeutig zu identifizieren. Damit können Diagnosetools Herstellerinformationen aus dem Internet abrufen. Des Weiteren bieten sie auch die Möglichkeit kundenspezifische Daten wie Einsatz-Zweck und –Ort abzulegen.

Die I&M-Funktionen werden mit Hilfe der azyklischen DP-V1-Dienste DS_READ und DS_WRITE realisiert. Für diese Dienste existieren in den Entwicklungsumgebungen der Steuerungen bereits vorgefertigte Funktionen, so dass ausschließlich die Nutzdaten der Telegramme korrekt implementiert werden müssen.

Zunächst wird die Anforderung des Parameterzugriffs per DS_WRITE an den DP-Slave gesendet. Dieser bearbeitet und quittiert die Anfrage. Im Anschluss prüft der Master per DS_READ das Ergebnis der Anfrage. Der DP-Slave wird entweder mit einer Kurzquittung, solange das Ergebnis noch nicht bereitsteht, oder mit dem Ergebnistelegramm antworten, wenn die Bearbeitung abgeschlossen ist. Im Fall eines Lesens von I&M-Daten enthält die Antwort den I&M-Datenblock.

Im Fehlerfall enthält die Antwort des DP-Slaves auf die DS_Read- oder DS_WRITE-Anfrage einen Fehlercode.

Die folgende Abbildung 7.7 zeigt ein Beispiel für das Lesen der I&M0-Daten. Zur Übersichtlichkeit werden nur die Nutzdaten der SD2-Telegramme gezeigt. Die hervorgehoben gedruckten Octets sind die Nutzdaten des DS_READ- bzw. DS_WRITE-Dienstes. Diese müssen an Slot 0, Index 255 gesendet werden.

Abbildung 7.7: Lesen – I&M0-Daten

Die folgende Abbildung 7.8 zeigt ein Beispiel für das Schreiben der I&M1-Daten. Zur Übersichtlichkeit werden nur die Nutzdaten der SD2-Telegramme gezeigt.

Die hervorgehoben gedruckten Octets sind die Nutzdaten des DS_READ- bzw. DS_WRITE-Dienstes.

Abbildung 7.8: Schreiben - I&M1-Daten

Das Beispiel in Abbildung 7.9 zeigt die Fehlerbehandlung. Fehlermeldungen werden ausgegeben für den Fall, dass versucht wird auf einen nicht vorhandenen I&M-Datenblock zuzugreifen, oder versucht wird auf I&M0 zu schreiben.

Die hervorgehoben gedruckten Octets sind die Nutzdaten des DS_WRITE-Dienstes.

Abbildung 7.9: Fehlerbehandlung

Die in der Tabelle 7.22 aufgeführten Fehlermeldungen sind möglich.

Fehlercode	Bedeutung
80 B8 00	Fehlermeldung von DS_Write, wenn versucht wird auf I&M0 zu schreiben, oder die Datenlänge der Schreibanforderung ungleich 68 ist.
80 B6 00	Fehlermeldung von DS_Write, wenn "extended FN" ungleich 8 ist.
80 B5 00	Fehlermeldung von DS_Read, wenn vorher keine Anforderung mit DS_Write geschrieben wurde.
80 B0 00	Fehlermeldung von DS_Write, wenn versucht wird auf ungültige Slot- Index-IM_Index-Kombinationen zuzugreifen.

Tabelle 7.22: Fehlermeldungen

7.13 Slave-Querverkehr – DxB

Der Slave-Querverkehr ist eine Erweiterung des zyklischen Datenaustauschs. Er dient dazu die Prozessdaten eines DP-Slaves an einen oder mehrere andere DP-Slaves direkt zu senden. DP-V2-Slaves können als Publisher oder als Subscriber parametriert werden. Publisher publizieren ihre Eingangsdaten und Subscriber abonnieren die Daten eines oder mehrerer Publisher. Die Konfiguration eines DP-Slaves als Publisher ist trivial. Im Projektierungstool wird der DP-Slave als Publisher definiert, dies führt dazu, dass der DP-Master im Parametrierungstelegramm Octet 7 Bit 7 (Publisher_Enable) setzt.

Im Datenaustausch antwortet der DP-Slave daraufhin mit einer Broadcast-Empfängeradresse, die grundsätzlich von jedem Teilnehmer empfangen werden kann. Jeder Subscriber enthält eine eigene Tabelle, diese definiert welche Publisher abonniert werden sollen. Wie diese Tabelle konfiguriert wird und wie die Daten des Subscribers verarbeitet werden, wird in diesem Handbuch nicht abgedeckt.

- Als Sensoren unterstützen WDGA-Drehgeber nur die Publisher Funktion.
- Nur für Klasse-4-Drehgeber relevant

7.14 Isochroner Modus – IsoM

Beim isochronen Modus handelt es sich um eine Betriebsart, bei der der DP-Master den DP-Slaves vorgibt zu welchem Zeitpunkt die Eingangsdaten zu erfassen und die Ausgangsdaten auszugeben sind. Auf diese Weise wird sichergestellt, dass trotz sequenzieller Kommunikation des DP-Masters mit den einzelnen DP-Slaves sämtliche Prozessdaten zu einem bestimmten Zeitpunkt gültig waren (Eingangsdaten) bzw. sein werden (Ausgangsdaten).

Die Zeit T_i bestimmt das Alter der Eingangsdaten. Diese darf nicht größer als die DP-Zykluszeit sein. Sie muss allerdings größer sein als die minimale benötigte Datenerfassungszeit des langsamsten DP-Slaves im Netzwerk.

Die Zeit T₀ bestimmt den Zeitversatz des Ausgabewertes. Diese darf ebenfalls nicht größer als die DP-Zykluszeit sein. Sie muss größer sein, als die Zeit, die für den Datenaustausch mit sämtlichen DP-Slaves benötigt wird. Diese ist von der Anzahl der anzusprechenden DP-Slaves und der Konfiguration der Busübertragung abhängig.

Die Konfiguration dieser Zeiten wird vom Projektierungstool der Steuerung übernommen und basiert auf den Angaben in den GSD-Dateien der einzelnen DP-Slaves.

• Nur für Klasse-4-Drehgeber relevant

Zur Synchronisierung der DP-Slaves auf einen gemeinsamen Takt, wird vom DP-Master zu Beginn jedes DP-Zyklus ein Taktschlägertelegramm gesendet. Die DP-Slaves überwachen das Taktschlägertelegramm und passen ihre internen Takte entsprechend an, so dass alle Datenerfassungen und Datenausgaben innerhalb einer Mikrosekunde genau beieinander liegen.

Abbildung 7.10: Synchronisierung – Taktschlägertelegramm

Da das zyklisch ablaufende Steuerungsprogramm in der Regel mehr Zeit benötigt als ein DP-Zyklus, müssen ggf. mehrere DP-Zyklen pro Master-Zyklus durchlaufen werden (siehe Abbildung 7.11). Es muss davon ausgegangen werden, dass in den nachfolgenden DP-Zyklen von der Steuerung keine gültigen Daten gesendet werden. Daher müssen die DP-Slaves feststellen, welcher DP-Zyklus mit dem Beginn eines DP-Master-Zyklus zusammenfällt. Dazu sendet der DP-Master als Teil der Ausgangsdaten ein "Master-Lebenszeichen", welches vom Steuerungsprogramm bei jedem Durchlauf um eins erhöht wird. Sobald ein DP-Slave feststellt, dass das "Master-Lebenszeichen" inkrementiert wurde, erhöht er sein "Slave-Lebenszeichen" gleichfalls. Da auch das "Slave-Lebenszeichen" Teil des zyklischen Datenaustauschs ist, kann das Steuerungsprogramm feststellen, wann die gesamte Anlage mit dem DP-Master-Zyklus synchronisiert ist. So wird eine gegenseitige Überwachung der DP-Master- und DP-Slaveapplikationen möglich und es können Maßnahmen ergriffen werden, für den Fall, dass die Echtzeitanforderungen des Gesamtsystems nicht mehr erfüllt werden.

7.15 Applikationsprofile

Für ein ausfallfreies System zwischen der Automatisierungslösung und den Busteilnehmern müssen die grundlegenden Funktionen und Dienste übereinstimmen. Die Voraussetzung dafür sind gleiche Begrifflichkeiten und Datenformate für die Kommunikation, Gerätefunktionen, sowie Branchenlösungen. Diese Vereinheitlichung erfolgt über die "Applikationsprofile". Dabei wird zwischen den Geräte- (Device Profiles), Branchen- (Industry Profiles) und Integrationsprofilen (Integration Profiles) unterschieden.

Die von Wachendorff verwendeten Applikationsprofile sind in der Tabelle 7.26 aufgeführt.

Allg. Applikationsprofil	Profil-Inhalt	Geräteklasse	PNO-Nr.:
Identification &	Spezifiziert das Konzept	Klasse	3.502
Maintenance (I&M)	zur Ablage von geräte-	3 + 4	
V1.2 (Oct., 2009)	spezifischen Daten des		
	PROFIBUS-Gerätes.		
	Ermöglicht einheitlichen		
	Zugang des Betreibers auf		
	alle gerätespezifischen		
	Daten		
Spez. Applikationsprofil	Profil-Inhalt	Geräteklasse	PNO-Nr.:
Encoder Profile 4.1	Ankopplung von Encodern	Klasse	3.162
(Dec., 2008)	mit ST- und MT-Auflösung;	3 + 4	
	Basiert auf DP-V1/V2-		
	Funktionen		
PROFIdrive 4.1	Geräteverhalten und	Klasse	3.172
(May, 2006)	Zugriffsverfahren auf	3 + 4	
	Daten für drehzahlver-		
	änderbare elektronische		
	Antriebe an PROFIBUS		

Tabelle 7.23: Applikationsprofile

Das Applikationsprofil "I&M" ist in einem Drehgeber der Klasse 3 bzw. 4 enthalten. Hiermit ist es unter Anderem möglich die verwendeten Profile, der Drehgeber-Typ, Hersteller, die Seriennummer usw. auszulesen.

7.15.1 Drehgeberprofile

Das Encoder Profile 4.1 ist das Geräteprofil für Drehgeber. Encoder Profile 4.1 realisiert die Klasse 3 und 4.

Das Standardprofil für die Antriebstechnik mit PROFIBUS und PROFINET ist PROFIdrive (nur für: DP-V1/V2, siehe Abbildung 7.12). Dadurch ist eine einfache Kopplung von Antrieben und Steuerungen unabhängig vom Hersteller möglich.

Abbildung 7.12: Übersicht – Encoder Profile

Je nach Leistungsstufe (siehe Abschnitt 7.5.1) stehen unterschiedliche Funktionen und zusätzliche Erweiterungen zur Verfügung. Die Tabelle 7.24 zeigt die verschiedenen Dienste je nach Leistungsstufe (DP-V0, DP-V1 und DP-V2) in Abhängigkeit der Geräteklassen des Drehgebers.

Leistungsstufe	Drehgeber Klasse 3	Drehgeber Klasse 4
DP-V0		
zyklischer Datenaustausch	P	Р
Parametrierung	P	Р
Konfiguration	P	Р
Diagnose	Р	Р
DP-V1		
azyklischer Datenaustausch	P	P
1&M	P	P
azyklischer Parameterzugriff	P	P
DP-V2		
Data Exchange Broadcast (DxB)	0	Р
Isochronous Mode (IsoM)	0	Р
Uhrzeitsynchronisation	0	0
Redundanz	0	0

Tabelle 7.24: Leistungsstufe und Klasseneinteilung

7.15.2 PROFIdrive

PROFIdrive ist ein anwendungsorientiertes Standardprofil für die Antriebstechnik und ist in der IEC 61800-7 für PROFIBUS und PROFINET normiert. Dem Antriebsanwender ermöglicht die Standardisierung eine herstellunabhängige Kommunikation zwischen verschieden Antriebskomponenten.

In der PROFIdrive-Architektur sind die Kommunikationsunabhängigen Funktionen im Basis-, Parameter und Applikationsmodell beschrieben. Wird PROFIdrive auf PROFIBUS-DP abgebildet, dann wird das Kommunikationsmodell von PROFIdrive (siehe Abbildung 7.13) auf das Kommunikationsmodell von PROFIBUS-DP (siehe Abbildung 7.14) übertragen.

Abbildung 7.13: Kommunikationsmodell – PROFIdrive

Abbildung 7.14: Kommunikationsmodell - Abbildung auf PROFIBUS-DP

Im PROFIBUS-Standardprofil ist beispielsweise festgelegt, dass das Standard-Telegramm 81 - 98 (PNU922) für die Encoder-Profile reserviert ist. Des Weiteren ist der Aufbau der Status- und Kontrollwörter darin festgelegt. Unter der Standardtelegramm-Nummer 100 – 60000 sind Geräteherstellerspezifischen Telegramme reserviert.

• Details zu PROFIdrive sind dem PROFIdrive-Profil [4] zu entnehmen.

7.16 Debugsteuerwort

Als Besonderheit der WDGA-Drehgeber gibt es für beide Drehgeberprofile ein zusätzliches herstellerspezifisches Telegramm, welches ein Debugsteuer- und Zustandswort enthält (siehe Tabelle 7.25 und Tabelle 7.26).

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	Slave-Adresse freigeben	Testfehler

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	Slave-Adresse fixiert	Testfehler aktiv

Tabelle 7.25: Debug_STW

Tabelle 7.26: Debug_ZSW

Der "Testfehler" ist beim Testen der Fehlerbehandlung eines Steuerungsprogramms nützlich. Bei einem Drehgeber ist es nicht ohne weiteres möglich einen Fehler zu provozieren. Mit "Testfehler" wird ein Fehler simuliert, in dem das Bit 0 von "Debug_STW" gesetzt wird (siehe Tabelle 7.25). Ob der "Testfehler" zurzeit aktiv ist, lässt sich am Bit 0 von "Debug_ZSW" ablesen (siehe Tabelle 7.26).

 Es ist zu beachten, dass der dadurch ausgelöste Diagnosealarm bei der Klasse 4 quittiert werden muss, selbst wenn der Testfehler wieder inaktiv gesetzt wurde.

Es ist möglich beim softwareseitigen Einstellen der DP-Slave-Adresse über ein Projektierungstool das zukünftige Ändern der DP-Slave-Adresse zu sperren. Um diese Sperre wieder aufzuheben ist eine herstellerspezifische Lösung erforderlich. Da es am Drehgeber keine physikalischen Schalter gibt, die im Betrieb erreichbar wären, lässt sich die Sperre nur über das Debugsteuerwort wieder lösen (siehe Tabelle 7.25). Ist die "Slave-Adresse fixiert" ist das am Bit 1 von "Debug_ZSW" erkennbar. Um die Sperre "Slave-Adresse fixiert" zu lösen muss das Bit 1 – "Slave Adresse freigeben" – von "Debug_STW" gesetzt werden, bis das Bit 1 von "Debug_ZSW" zurückgesetzt wird.

8 FAQ

8.1 Projektierung

• Wie wird die Auflösung des Drehgebers eingestellt?

<u>Klasse 4:</u> Über die Parametrierung wird die Auflösung eingestellt (siehe Abschnitt 5.3.3)

• Wie wird der Preset des Drehgebers gesetzt und gespeichert?

Klasse 4: siehe Abschnitt 5.6

• Wie wird die Position des Drehgebers ausgelesen?

Klasse 4: siehe Abschnitt 5.5

• Wie kann die Drehrichtung des Drehgebers geändert werden?

<u>Klasse 4:</u> Über die Parametrierung wird die Drehrichtung eingestellt (siehe Abschnitt 5.3.3). Die Klasse-4-Funktion muss aktiv sein.

• Wie können Diagnosenachrichten des Drehgebers ausgelesen werden?

Klasse 4: siehe Abschnitt 5.8

8.2 LED-Signalisierung – Drehgeber

Die BUS-LED leuchtet rot und die DEV-LED leuchtet grün?

Ursache liegt in der Installation:

• Sind alle PROFIBUS-Leitungen korrekt im Netzwerk angeschlossen?

Überprüfen Sie ihre Anlagenplanung hinsichtlich der PROFIBUS-Verkabelung.

• PROFIBUS-Leitung ist angeschlossen, hat aber keine Verbindung:

Liegt ein Drahtbruch vor?

Schließen Sie Wackelkontakte usw. aus

(Beachte auch: selbst konfektionierte Stecker)

Sind A und B in der Bushaube vertauscht?

• Ist die PROFIBUS-Adresse der Drehcodierschalter mit der Parametrierung des PROFIBUS-System konsistent?

Überprüfen Sie die Einstellung der Drehcodierschalter bzw. die Vergabe der PROFIBUSAdresse in der "HW konfig".

• Ist die PROFIBUS-Adresse eindeutig?

Siehe auch 4.4.2 bzw. 4.5.1

• Wurde die Terminierung korrekt vorgenommen?

Terminierung am letzten Teilnehmer des Segmentes (siehe auch 7.3.3)

Ursache liegt in der Projektierung:

• Wurde der Drehgeber korrekt in die Steuerung eingebunden?

Überprüfen Sie Ihre Hardwarekonfiguration und S7-Programmierung

• Der Drehgeber wurde korrekt in die Steuerung eingebunden:

Wurde das Projekt übersetzt und auf das Zielsystem übertragen?

Die BUS-LED leuchtet blinkt rot und die DEV-LED leuchtet grün?

• Haben Sie eine korrekte Parametrierung vorgenommen?

Liegen die Werte für "Measuring units per revolution" und "Total measuring range in measuring units" des zulässigen Wertebereichs?

Wurden beide Werte für "Measuring units per revolution" und "Total measuring range in measuring units" entsprechend angepasst (siehe Beispiel unter **Fehler! Verweisquelle konnte nicht gefunden werden.**)?

• Weitere Hinweise finden Sie unter dem Abschnitt 3.4

• Beachten Sie hierzu auch die Tabelle 3.1

9 Technische Beratung

Technischer Anwendungsberater

Sie haben Fragen zu diesem Produkt?

Ihre technischen Anwendungsberater helfen Ihnen gerne weiter.

Tel.: +49 (0) 67 22 / 99 65 414 E-Mail: support-wa@wachendorff.de

Notizen:

Literaturverzeichnis

- [1] PNO PROFIBUS Profile for Encoders; Order No. 3.062, Encoder Profile, May 1997.
- [2] PNO PROFIBUS Planungsrichtlinie, Version 1.0; Order No: 8.011, Planungsrichtlinie, November 2009.
- [3] M. Felser, PROFIBUS Handbuch, Berlin: Epubli-Verlag, 2010.
- [4] PNO. Profile Drive Technology PROFIdrive Technical Specification for PROFIBUS and PROFINET; Order No: 3.172, PROFIdrive Profile, May 2006.
- [5] PNO Technical Specification for PROFIBUS and PROFINET related to PROFIdrive Version 4.1; Order No: 3.162, Encoder Profile, December 2008.
- [6] PNO PROFIBUS Systembeschreibung Technologie und Anwendung, PROFIdrive Profile, November 2010.